Paul McEntee

About Paul McEntee

A couple of years back we hosted a “Take your daughter or son to work day,” which was a great opportunity for our children to find out what their parents did. We had different activities for the kids to learn about careers and the importance of education in opening up career opportunities. People often ask me what I do for Simpson Strong-Tie and I sometimes laugh about how my son Ryan responded to a questionnaire he filled out that day:

Q.   What is your mom/dad's job?
A.   Goes and gets coffee and sits at his desk

Q.   What does your mom/dad actually do at work?
A.   Walks in the test lab and checks things

When I am not checking things in the lab or sitting at my desk drinking coffee, I manage Engineering Research and Development for Simpson Strong-Tie, focusing on new product development for connectors and lateral systems.

I graduated from the University of California at Berkeley and I am a licensed Civil and Structural Engineer in California. Prior to joining Simpson Strong-Tie, I worked for 10 years as a consulting structural engineer designing commercial, industrial, multi-family, mixed-use and retail projects. I was fortunate in those years to work at a great engineering firm that did a lot of everything. This allowed me to gain experience designing with wood, structural steel, concrete, concrete block and cold-formed steel as well as working on many seismic retrofits of historic unreinforced masonry buildings.

Simpson Strong-Tie® Strong-Wall® Wood Shearwall – The Latest in Our Prefabricated Shearwall Panel Line Part 2

In last week’s blog post, we introduced the Simpson Strong-Tie® Strong-Wall® Wood Shearwall. Let’s now take a step back and understand how we evaluate a prefabricated shear panel to begin with.

First, we start with the International Building Code (IBC) or applicable state or regional building code. We would be directed to ASCE7 to determine wind and seismic design requirements as applicable. In particular, this would entail determination of the seismic design coefficients, including the response modification factor, R, overstrength factor, Ωo, and deflection amplification factor, Cd, for the applicable seismic-force-resisting system. Then back to the IBC for the applicable building material: Chapter 23 covers Wood. Here, we would be referred to AWC’s Special Design Provisions for Wind and Seismic (SDPWS) if we’re designing a lateral-force-resisting system to resist wind and seismic forces using traditional site-built methods.

Design Documents: IBC, ASCE7 and SDPWS

Design Documents: IBC, ASCE7 and SDPWS

These methods are tried and true and have been shown to perform very well in light-frame construction during wind or seismic events. But over the years, many people have come to enjoy things like lots of natural light in our homes, great rooms with tall ceilings and off-street secure parking.

prefab2Due to Shearwall aspect ratio limitations defined in SDPWS as well as the strength and stiffness limitations of these traditional materials – including wood structural panel sheathing, plywood siding and structural fiberboard sheathing, to name a few – we’re left looking for alternative solutions. Thankfully, the IBC has left room for the use of innovative solutions beyond what’s explicitly stated in the code. Section 104.11 of the 2015 IBC provides the following provision:

104.11 Alternative material, design and methods of construction and equipment

The provisions of this code are not intended to prevent the installation of any material or prohibit any design or method of construction not specifically prescribed by this code, provided that any such alternative has been approved. An alternative material, design or method of construction shall be approved where the building official finds that the proposed design is satisfactory and complies with the intent of the provisions of this code, and that the material, method, or work offered is, for the purpose intended, not less than the equivalent of that prescribed in this code in quality, strength, effectiveness, fire resistance, durability and safety…

104.11.1 Research Reports. Supporting data, where necessary to assist in the approval of materials or assemblies not specifically provided for in this code, shall consist of valid research reports from approved sources.

104.11.2 Tests. Whenever there is insufficient evidence of compliance with the provisions of this code […] the building official shall have the authority to require tests as evidence of compliance…

Research Reports

The route we at Simpson Strong-Tie typically take is to obtain a research report from an approved source, i.e., the ICC Evaluation Service or the IAPMO Uniform Evaluation Service. Each of these evaluation service agencies publishes acceptance criteria that have gone through a public review process and contain evaluation procedures. The evaluation procedures might contain referenced codes and test methods, analysis procedures and requirements for compatibility with code-prescribed systems.

Prefabricated Panel Evaluation

Let’s once again take a step back and consider the function of our Strong-Wall® shearwalls. They’re prefabricated panels intended to provide lateral and vertical load-carrying capacity to a light-framed wood structure where traditional methods are not applicable or are insufficient. We need to provide a complete lateral load path, which ensures that the load continues through the top connection into the panel and then into the foundation through the bottom connection. To evaluate the panel’s ability to do what we’re asking of it, we use a combination of testing and calculations with considerations for concrete bearing, fastener shear, combined member loading, tension and shear anchorage, panel strength and stiffness, etc.

I could write a five-thousand-word feature story for the New York Times discussing the calculations in great detail, but let’s focus on the more exciting part – testing! Simpson Strong-Tie has several accredited facilities across the country where all of this testing takes place; click here for more info.

Testing Acceptance Criteria

Now to pull back the curtain a bit on the criteria we follow in our testing: We test our panels in accordance with the criteria provided in ICC-ES AC130 – Acceptance Criteria for Prefabricated Wood Shear Panels or ICC-ES AC322 – Acceptance Criteria for Prefabricated, Cold-Formed, Steel Lateral-Force-Resisting Vertical Assemblies, as applicable. These criteria reference the applicable ASTM Standard, ASTM E2126-11, which illustrates test set-up requirements and defines the loading protocol among other things. If you’re interested, the work done by the folks involved with the CUREE-Caltech Woodframe Project, which is the basis for the testing protocol we use today, makes for an excellent read. The CUREE protocol, as it’s known, is a displacement-controlled cyclic loading history that defines how to load a panel. A reference displacement, Δ, is determined from monotonic testing, and the cyclic loading protocol, which is a series of increasing displacements whose amplitudes are functions of Δ, is developed. I’ve provided a graphic depicting the protocol below.

CUREE Loading Protocol (Excerpt from ASTM E2126-11)

CUREE Loading Protocol (Excerpt from ASTM E2126-11)

When prefabricated shear panels are subjected to the loading protocol shown above, a load-displacement response is generated; we call this a hysteresis loop or curve.

Hysteresis Curve (Excerpt from ASTM E2126-11)

Hysteresis Curve (Excerpt from ASTM E2126-11)

We then use this curve to generate an average envelope (backbone) curve that will be used for analysis in accordance with the procedures defined in AC130 or AC322 as applicable.

Average Envelope Curve (Except from ASTM E2126-11)

Average Envelope Curve (Except from ASTM E2126-11)

Returning to the acceptance criteria, there are different points of interest on the average envelope curve depending upon whether we’re establishing allowable test-based values for wind-governed designs or for seismic-governed designs. I should also note that both wind and seismic designs consider both drift and strength limits when determining allowable design values.

Wind is fairly straightforward, so let’s start there. While the building code does not explicitly define a story drift limit for wind design, the acceptance criteria do. The allowable wind drift, Δwind, shall be taken as H/180, where H is the story height. The allowable ASD in-plane shear value, Vwind, is taken as the load corresponding to Δwind. I mentioned a strength limit as well; this is simply taken as the ultimate test load divided by a safety factor of 2.0.

Contrary to wind design, the building code does define a story drift limit for seismic design. ASCE7 Table 12.12-1 defines the allowable story drift, δx, as 0.025H for our purposes, where H is the story height. The strength design level response displacement, δxe, is now determined using ASCE7 Equation 12.8-15 as referenced in AC130 and AC322 as follows:

formula1

Where:

  • δxe = LRFD strength design level response displacement
  • δx = Allowable story drift = 0.025H for Risk Category I/II Buildings (ASCE7 Table 12.12-1)
  • Ie = Seismic importance factor = 1.0 for Risk Category I Buildings (ASCE7 Table 1.5-2)
  • Cd = Deflection amplification factor = 4.0 for bearing wall systems consisting of light-frame wood walls sheathed with wood structural panels rated for shear resistance (ASCE7 Table 12.2-1)

We then consider the shear load corresponding to the strength level response displacement, VLRFD, and multiply this value by 0.7 to determine the allowable ASD shear based on the seismic drift limit, VASD. Lastly, the seismic strength limit is taken as the ultimate test load divided by a safety factor of 2.5.

Compatibility with Code-Prescribed Methods

We’ve gone through the steps to evaluate the allowable design values for our panels, but we’re not done yet. AC130 and AC322 define a series of criteria to ensure that the seismic response is compatible with code-defined methods with respect to strength, ductility and deformation capacity. Once we verify that these compatibility parameters have been satisfied, we may then apply the response modification factor, R, overstrength factor, Ωo, and deflection amplification factor, Cd, defined in ASCE7 for bearing wall systems consisting of light-frame wood or cold-formed steel walls sheathed with wood structural panels or steel sheets. This enables the prefabricated shearwalls to be used in light-frame wood or cold-formed steel construction. I’ve very briefly covered an important topic in seismic compatibility, but there has been plenty published on the issue; I recommend perusing the article here for more details.

We’ve now followed the path from building code to acceptance criteria to evaluation report. More importantly, we understand why Strong-Wall® shearwall panels are required and the basics of how they’re evaluated. If there are items that you’d like to see covered in more detail or if you have questions, let us know in the comments below.

 

Simpson Strong-Tie® Strong-Wall® Wood Shearwall – The Latest in Our Prefabricated Shearwall Panel Line Part 1

calebphoto1This week’s post comes from Caleb Knudson, an R&D Engineer at our home office. Since joining Simpson Strong-Tie in 2005, he has been involved with engineered wood products and has more recently focused his efforts on our line of prefabricated Strong-Wall Shearwall panels. Caleb earned both his Bachelor’s and Master’s degrees in Civil Engineering with an emphasis on Structures from Washington State University. Upon completion of his graduate work, which focused on the performance of bolted timber connections, Caleb began his career at Simpson and is a licensed professional engineer in the state of California.

Some contractors and framers have large hands, which can pose a challenge for them when they’re trying to install the holdown nuts used to attach our Strong-Wall® SB (SWSB) Shearwall product to the foundation. Couple that challenge with the fact that anchorage attachment can only be achieved from the edges of the SWSB panel, and variable site-built framing conditions can limit access depending upon the installation sequence. To alleviate anchorage accessibility issues, we’ve required a gap between the existing adjacent framing and SWSB panel equal to the width of a 2x stud to provide access so the holdown nut can be tightened. Even so, try telling a framer an inch and a half is plenty of room in which to install the nut!

SWSB Edge Access

SWSB Edge Access

2x Gap for SWSB Installation

2x Gap for SWSB Installation

 

 

 

 

 

 

 

 

 

While the SWSB is a fantastic product with many great features and benefits from its field adjustability to its versatility with different applications and some of the highest allowable values in the industry, the installation challenges were real.

Back to the Drawing Board

Our goal was to develop a new holdown for the SWSB that would allow for face access of the anchor bolts, making the panel compatible with any framing condition, while maintaining equivalent performance. All we needed to do is cut a large hole in each face of the holdown without compromising strength or stiffness — piece of cake, right? Well, that’s exactly what we did. In the process, we addressed the needs of the architect, the engineer and the builder — and for bonus points, anchorage inspection is now much easier, which should make the building official happy too.

Introducing the Simpson Strong-Tie® Strong-Wall® Wood Shearwall

Simpson Strong-Tie® has just launched the Strong-Wall® Wood Shearwall (WSW) panel, which replaces the SWSB. The new panel provides the same features and benefits, and addresses the same applications as the SWSB; however, now it also features face-access holdowns distinguished by their Simpson Strong-Tie orange color.

Strong-Wall Wood Shearwall

Strong-Wall Wood Shearwall

We’ve also updated the top connection, which now provides two options based on installer preference. The standard installation uses the two shear plates shipped with the panel which are installed on each side of the panel by means of nails. As an alternative, the builder can install a single shear plate from either side of the panel using a combination of Strong-Drive® SD Connector screws and Strong-Drive® SDS Heavy-Duty Connector screws.

woodshear4

Allowable In-Plane Lateral Shear Loads

I mentioned that one of our primary development requirements was to meet the existing allowable design values of the SWSB. Not only did we meet our target values, but we exceeded them by as much as 25% for standard and balloon framing application panels and up to 50% for portal application panels. I’ve included a table below showing the most commonly specified standard and portal application SWSB models and how the allowable wind and seismic shear values compare to those of the corresponding WSW model.

woodshear11

Grade-Beam Anchorage Solutions

I’d be remiss if I didn’t point out the grade-beam anchorage solutions we’ve developed for use with the Strong-Wall Wood Shearwall. The solutions have been calculated to conform to ACI 318-14, and testing at the Simpson Strong-Tie Tyrell Gilb Research Laboratory confirmed the need to comply with ACI 318 requirements to prevent plastic hinging at anchor locations for seismic loading. The testing consisted of 1) control specimens without anchor reinforcement, 2) specimens with closed-tie anchor reinforcement, and 3) specimens with non-closed u-stirrups. Flexural and shear reinforcement were designed to resist amplified anchorage forces and compared to test beams designed for non-amplified strength-level forces.

Significant Findings from Testing

We found that grade-beam flexural and shear capacity is critical to anchor performance and must be designed to exceed the demands created by the attached structure. In wind load applications, this includes the factored demand from the WSW. In seismic applications, testing and analysis have shown that in order to achieve the anchor performance expected by ACI 318 Anchorage design methodologies, the concrete member design strength needs to resist the amplified anchor design demand from ACI 318-14 Section 17.2.3.4. To help Designers achieve this, Simpson Strong-Tie recommends applying the seismic design moment listed below at the WSW location.

woodshear7

We also found that closed-tie anchor reinforcement is critical to maintain the integrity of the reinforced core where the anchor is located. Testing with u-stirrups that did not include complete closed ties showed premature splitting failure of the grade beam. In a previous blog post, we discussed our grade-beam test program in much greater detail as it applies to our Steel Strong-Wall panels.

Strong-Wall® Wood Shearwall

To support the Strong-Wall Wood Shearwall, Simpson Strong-Tie has published a 52-page catalog with design information and installation details. We’ve also received code listing from ICC-ES; the evaluation report may be found here. Now that you’re all familiar with the WSW, be sure to check out next week’s blog post where we’ll cover the basics of prefabricated shear panel testing and evaluation. In addition, to help Designers understand all of the development and testing as well as design examples using prefabricated shearwalls, Simpson Strong-Tie will be offering a Prefabricated Wood Shearwall Webinar on June 21, 2016, covering:

  • The different types of prefabricated shearwalls and why they were developed.
  • The engineering and testing behind prefabricated shearwalls.
  • Best practices and design examples for designing to withstand seismic and wind events.
  • Code reports on shearwall applications.
  • Introduction of the latest Simpson Strong-Tie prefabricated shearwall.

You can register for the webinar here.

Last but not least, we always appreciate hearing from you, whether you’re an engineer specifying our panels or in the field handling the installation. If there are applications that we haven’t addressed or additional resources that would be beneficial, please let us know in the comments below.

Habitat STRONG Blog

This week’s post was written by Kevin Gobble of Habitat for Humanity. Kevin is the Program Manager for Habitat for Humanity’s new Habitat Strong initiative. Kevin has spent over 22 years in residential construction building energy-efficient, high-performing home, and has consulted with several sustainable building programs on ways to develop their own best practices. As a third-generation builder, he has knowledge in the field of residential building science and has furthered his education to include many industry certifications — NARI Certified Remodeler, NAHB Certified Green Professional, RESNET Certified Green Rater, BPI Building Analyst, FORTIFIED evaluator, and Level 1 Infrared Thermography — while working directly with industry partners to focus on cost-effective construction solutions. Kevin has built and remodeled numerous homes to high-performance standards as certified by various building programs, including his latest project for himself: converting a condemned historic property in Atlanta to EarthCraft House Platinum.

In a previous blog post, we discussed the background of the Habitat Strong program. Habitat Strong promotes the building of resilient homes that are better equipped to withstand natural disasters in every region of the country. This program uses IBHS FORTIFIED Home™ standards and works well within Habitat’s model of building affordable, volunteer-friendly homes.

habitat1

Project Spotlight – Habitat for Humanity New Haven, CT

Habitat for Humanity New Haven’s innovative approach to building a traditional New England– style home with modern improvements began with a design from an historic home they rehabilitated years ago. The original was an old Winchester factory worker home, but the style was adapted to fit the narrow lots and surviving character of New Haven. Along with the design shift, the plans were standardized to incorporate FORTIFIED Gold techniques and practices for hurricanes.

New Haven has fully embraced FORTIFIED building practices following Superstorm Sandy. They have completed eight FORTIFIED Gold homes to date with three more under construction, perfecting their techniques as they go. An example to other Habitat affiliates, they have provided a model for using affordable construction methods and volunteers. They have also created a positive impact on their community by sharing their knowledge with other builders in the area.

“Improving the roof is a no-brainer, and it makes sense to tape the plywood seams,” noted construction manager Antoine Claiborne. Habitat has gone one step further by using the ZIP system on the roof for safety and durability improvements. This eliminates the need to nail down the underlayment every six inches o.c. along the edge and in the field, which can prove difficult for volunteers.

In addition to employing these roof techniques, New Haven uses Simpson Strong-Tie connectors (after re-engineering plans) to meet these new guidelines and to create a continuous load path. To promote ease of use for new volunteers, an advanced framing center is set up onsite, using diagrams and videos to demonstrate how the process works and what to expect. Documentation is another key to the FORTIFIED process – in New Haven’s case, the onsite construction manager documents all the FORTIFIED elements.

For opening protection, New Haven uses pressure-rated doors with Hurricane Fabric for impact protection as well as impact-rated windows. It was recently discovered that impact windows can shatter in a small area if hit there while  otherwise remaining intact. Thus there’s a need to use caution when mowing grass where there are small rocks near the home.

habitat2

How can you help?  Contact Habitat for Humanity if you would like to donate or volunteer. If you have engineering expertise you can lend, I would love to hear from you at HabitatSTRONG@habitat.org.

Multi-Ply Beam Load Transfer

Larger beams are often built up out of smaller 2x or 1¾” members. This can be done for several different reasons: for the convenience of handling smaller members on the jobsite, or because solid 4x, 6x or glulam material is not readily available, or for reasons of cost. Engineered wood such as laminated veneer lumber (LVL) is often used for its high load capacity and multiple 1¾” plies are built up to get the required capacity for the application.

8-Ply LVL Beam in HHGU14 Test

8-Ply LVL Beam in HHGU14 Test

When a built-up beam is loaded concentrically as in the test setup shown, fastening the members is not critical since that giant steel plate will load each ply of the beam. In the field, built-up beams or girders commonly support joists or beams framing into their side. The built-up members must be connected to transfer load from the loaded ply into the other plies.

SDW - Uniform Allowable Loads

Allowable Uniform Loads and Spacing Requirements

SDW - Assembly Types and Spacing Requirements

Page 303 of our Fastening Systems catalog, C-F-14 provides allowable uniform load tables for side-loaded multi-ply assemblies using LVL, PSL or LSL material. The calculation for the allowable load applied to the outside ply of a multi-ply beam is:

Screen Shot 2016-04-28 at 2.07.29 PM

While uniform loads are very common, Designers often request additional information to design multi-ply beam connections to transfer concentrated loads. Simpson Strong-Tie has created a new engineering letter, L-F-SDWMLTPLY16, which complements the information in the Fastening Systems catalog by providing allowable loads in a single fastener format. Designers can use the information to calculate the number of fasteners required for a given point load.

Simpson Strong-Tie® Strong-Drive® SDW EWP-Ply Screw – Allowable Loads for Side-Loaded Multi-Ply Assemblies per Screw

Simpson Strong-Tie® Strong-Drive® SDW EWP-Ply Screw – Allowable Loads for Side-Loaded Multi-Ply Assemblies per Screw

In order to ensure load transfer, the SDW screws need to be located relatively close to the connection. At first glance, it may appear challenging to fit enough fasteners while meeting the non-staggered row-spacing requirements. However, we have found that most loads can be managed by taking advantage of the ⅝” stagger allowance.

SDW – Maximum Fastener Spacing from Point Load

SDW – Maximum Fastener Spacing from Point Load

If you are curious what happened in that HHGU14 test, the screws pulled out of the header with a load slightly exceeding 101,000 pounds. Failure photo 2 shows a close-up of the pullout failure. The tested load was very close to the maximum calculated capacity for the SDS screws in the connector, so it was a great test result. What are your thoughts? Let us know in the comments below.

HHGU14 Test Failure 1 HHGU14 Test Failure 2

Fine Homebuilding Video Series: How to Build a Deck

We’re partnering with folks at Fine Homebuilding on a video series on how to build a deck that is code compliant and that highlights the critical connections of a deck. This series is called Ultimate Deck Build 2016. The video series comprises five videos that walk professionals through the recent code changes for the key connections of a deck.

The series features David Finkenbinder, P.E., a branch engineer for Simpson Strong-Tie who is passionate about deck codes and safety. He offers information on load resistance and the hardware that professionals can use at the crucial connections to make a deck code compliant. “This was a great opportunity to collaborate with the team at Fine Homebuilding, to communicate the connections on a typical residential deck and the role that they serve to develop a strong deck structure,” said David. “These same connections would also likely be common in similar details created by an Engineer, when designing a deck per the International Building Code (IBC).”

Screen Shot 2016-03-30 at 3.49.17 PM

The videos are being released every Wednesday during the month of March and feature the following deck connections:

  • Ledger Connection: This is the primary connection between a deck and a house. David tells the Fine Homebuilding team about various code- compliant options for attaching a deck ledger to a home.
  • Beam and Support Posts: David explains how connectors at this critical point can prevent uplift and resist lateral and downward forces. He also discusses footing sizes and post-installation anchor solutions.
  • Joists: This video reviews proper joist hanger installation and the benefits of installing hurricane ties between the joists and the beams. David goes into common joist hanger misinstallations, such as using the wrong fasteners or using a joist hanger at the end of a ledger.
  • Guardrail Posts: David reviews the different ways that you can attach a guardrail post so as to resist an outward horizontal load.
  • Stairs: David explains code-compliant options for attaching stringers to a deck frame.

Make sure to watch the series and let us know what you think. For more information, Fine Homebuilding has created an article titled “Critical Deck Connections.”

(Please note: this article is member-only/subscription content, so to read it you’ll need to either subscribe online or pick up the April/May issue of Fine Homebuilding.)

Screen Shot 2016-03-30 at 4.06.33 PM

Installation Errors – They Happen

A few years ago, we did a post on creative uses of our products. Most of the uses shown were artistic, or functional do-it-yourself projects, with one odd car spoiler modification. This week, I was reviewing some slides in a presentation that I give a few times a year regarding product installation errors. I call them misinstallations, but I’m not sure that’s a word. I thought I’d share a few of the more instructional ones. Most of the photos were curated by our northwestern region training manager, Olga Psomostithis – thanks Olga!

Double Shear Hangers

install1

Double shear hangers require joist fasteners that are long enough to penetrate through the hanger, through the joist and into the header. The joist nails help transfer load from the joist into the header, resulting in higher allowable loads.

install2.1

The installation shown has had the double shear tabs bent back, and nails installed straight into the joist. Since the joist nails do not penetrate the header, this would result in a reduced capacity.

Holdowns

I’m including the trailer hitch installation because it makes me laugh no matter how many times I see it.

install4

A very common question we get about holdowns is related to posts being offset too far from the anchor bolt (or is the anchor too far from the post?). In the installation shown below, the holdown is not flush with the post as the anchor bolt is offset about 1 inch. For small offsets up to about 1½”, a common solution is to raise the holdown off the sill plate and extend the anchor bolt with a coupler and bend it so there is a small (1:12) slope to it.

install5

The holdown test standard, ICC-ES AC155, which is discussed in this post, requires that holdowns are tested raised off the test bed, which you can see in the photo below. Holdowns may be raised up to 18” above the top of concrete without a reduction in load provided that the additional elongation of the anchor rod is accounted for.

install6

install7

I like this photo because the installer put on the nail stops to protect the pipes. It is good to remember that plumbing happens when laying out a structural system.

Oh boy, does it happen.

Oh boy, does it happen.

install9STHD Holdowns

install12

install16

The photo above is not a misinstallation, but something that can happen. Embedded strap-style holdowns are cost-effective solutions for shearwall overturning or wind uplift. It is permitted to bend the straps to horizontal and back to vertical one cycle. If spalls form, they should be evaluated for reduced loads. Any portion of the strap left exposed should be protected against corrosion.

Hanger Gaps

install13

Gaps can occur between trusses and supporting girders for a variety of reasons. For standard hanger tests, a 1/8″ gap is required between the joist and header per ASTM D7147. A resource for evaluating conditions with larger gaps is our technical bulletin Allowable Loads for Joist Hangers with Gaps. The technical bulletin has load data for a variety of hangers with gaps up to 3/8″, as well as recommended repairs for larger gaps. Our HTU product series comprises truss hangers specifically engineered to allow gaps up to ½”.

install14

install15

After going through a design project and carefully selecting the members and details of construction, it can be frustrating as an engineer to get that phone call from the general contractor or building inspector informing you that something is not right with the construction. Understanding some of the resources available to address installation errors can help solve these problems more quickly, and get you back to designing the next project.

Mass Timber Construction – Building for the Future

fredtai-2This week’s post comes from Fred Tai. Fred Tai is the Engineering Manager for Simpson Strong-Tie Canada where he has worked for the last 13 years. He has an extensive background in structural engineering and worked as a structural consultant in building designs prior to joining Simpson Strong-Tie. During his career, he was involved in ASTM D7 and is active in regional wood truss associations, regional building code committee and regional building research committee. He has a bachelor of applied science degree in Civil Engineering from the University of British Columbia, Canada and is a licensed engineer in Canada.

The future is here.

It is common knowledge that wood is a renewable and environmentally friendly building material. There are two types of wood-framing methods in North America. The most common method for residential construction is light-frame construction using either balloon-framing or platform-framing methods. Standardized dimensional lumber has become the dominant building material in light-frame construction because of its economy. The other method is heavy-timber construction, which often uses large solid-wood sections for nonresidential construction, such as for storage, mercantile and industrial buildings.

In Europe, there is a trend to create larger “laminated” wood sections using the more traditional standardized dimensional lumber of the 1990s. This trend culminated in what is now classified as cross-laminated timber, or CLT. CLT can be used to create floor panels and roof panels. In North America, this is classified either as cross-laminated timber (CLT) or generically as mass timber.

CLT is essentially multiple layers of wood panels. Each layer of wooden panels is laid crosswise on the one before at approximately a 90° angle and glued using a polyurethane adhesive to increase the stability of the entire panel. Typical thickness of the individual boards can vary from 3/8″ to 2″ thick. Typical board width can vary from 2-3/8” to 9-1/2” wide. CLT panels are fabricated and marketed from 3-ply CLT up to 7-ply CLT. CLT SE Blog 1manufacturers normally publish characteristic properties for their panels – such as bending strength, shear strength, modulus of elasticity and panel stiffness – to assist Designers in specifying these products.

A Cross Laminated Timber Handbook has been published by FPInnovations in Canada as an introduction to CLT. This handbook can be downloaded for free here. The American Wood Council has a self-study guide on CLT that can be downloaded here.

As in all wood buildings, connection designs are critical to the success of this new type of building material. Simpson Strong-Tie offices in Europe have been instrumental in developing and supplying connectors and fasteners in the CLT market. Simpson Strong-Tie has developed many connectors specifically for the CLT market in Europe (Figure 3).

SE Blog 3

Those connectors are used to join the CLT floor panels to CLT wall panels and CLT wall panels to the concrete foundation (Figures 1 and 2).

image001

SE Blog 2Specialized ring-shank nails and long metal screws have been developed as well. In mid-2014, Simpson Strong-Tie North America (Pleasanton, California Testing Facility) embarked on an initial test program to assess those connectors and fasteners developed for the CLT market by Simpson Strong-Tie Europe, using North American CLT panels to verify and quantify the performance characteristics according to North American testing protocols (American Society for Testing and Materials and Canadian Construction Materials Centre).

The initial test program used CLT panels fabricated in Western Canada using Canadian Spruce-Pine-Fir (S-P-F) lumber. The connectors and ring-shank nails were imported from the Simpson Strong-Tie European manufacturing facilities. Testing of the connectors also included the Simpson Strong-Tie Strong-Drive® SD screws, which as expected, provided higher load capacity than the ring-shank nails. A summary of the test program and the load rating developed for both the Canadian and the U.S. market can be downloaded here.

Other types of long countersunk screws such as the Strong-Drive® SDWS Timber screw (countersunk) or Strong-Drive SDWH Timber-Hex (hex head) screw (shown) are used either to splice the floor panels together or to drag the diaphragm loads back to the column or post as necessary.

SE Blog 4SE Blog 5

As CLT continues to gain acceptance in North America, other connection details will also become more popular. Simpson Strong-Tie intends to continue developing and improving connection details to support this type of construction.

Building code acceptance is another important requirement and development that is in progress in both Canada and the U.S. In Canada, the 2014 edition of CSA O86 “Engineering Design in Wood” has reserved a section for CLT.

The 2015 edition of the International Building Code (IBC) recognized CLT when it is manufactured to the product standard. CLT walls and floors will be permitted in all types of combustible construction. The 2015 National Design Specification (NDS) for Wood Construction was recently published and approved as an ANSI American National Standard. The 2015 National Design Specification is also referenced in the 2015 IBC.

The future is here. Environmentally friendly mass timber (including CLT) is poised to grow in use, especially with the recognition of CLT in the building codes. North American manufacturing of CLT has been established and can only grow to support the expanding use of this new building material.

References:

www.cwc.ca

www.awc.org

https://fpinnovations.ca

*Images with permission from FPInnovations

 

 

Don’t Buckle at the Knees: RCKW Testing

hienprofileThis week’s post comes from Hien Nguyen, one of our R&D engineers at the Simpson Strong-Tie Home Office in Pleasanton, CA. Hien has worked in new product development for 17 years on a variety of products. While she still does a few connector projects for wood, her skills and passion for cold-formed steel construction have allowed her to become our expert in CFS product development. Before joining Simpson Strong-Tie, Hien worked as a consulting engineer doing building design. She has a bachelor of science in Civil Engineering from UC Davis, and is a California Licensed Civil Engineer. Here is Hien’s post:

A previous blog post described how Simpson Strong-Tie tests and loadrates connectors used with cold-formed steel structural members per acceptance criteria ICC-ES AC261.

This week, I would like to describe how we test and determine engineering design values for RCKW, Rigid Connector Kneewall, in a CFS wall assembly and how the data can help designers perform engineering calculations accurately and efficiently.

The RCKW was developed to provide optimal rotational resistance at the base of exterior kneewalls, parapets, handrail and guardrail systems as well as interior partial-height walls.

RCKW connectors were tested in CFS wall assemblies for 33 mil, 43 mil, and 54 mil steel thicknesses and in stud members with depths from 3½ to 8 inches. RCKW connectors with stiffeners, RCKWS, were also tested in CFS wall assemblies for 43 mil, 54 mil, and 68 mil stud thicknesses.

rckw1

The wall assembly is built using CFS stud framing, bottom and top tracks simulating the kneewall application in the field. The RCKW connectors are fastened to a stud using self-drilling screws and an anchor to the test bed foundation. The horizontal load (P) is applied to the CFS wall assembly at a height (hwall) of 38 inches. The instruments are also placed at the same height as the applied load to measure wall deflection.  The load and deflection data are recorded concurrently until the wall assembly fails.

The allowable moment, MASD, is determined by multiplying PASD, the allowable horizontal load, by hwall, wall height (MASD = PASD * hwall).

PASD is calculated from peak load or nominal load, PNominal, divided by Ω, a safety factor per AISI 100 Chapter F. The blog post on Cold-Formed Steel Connectors discusses safety factors for CFS testing.

Similarly, the allowable rotational angle, θASD, is also determined by wall deflection at allowable load, ∆ASD, divided by hwallASD = ∆ASD /  hwall).

So the assembly rotational stiffness, β, is calculated by MASD, divided by θASD (β = MASD / θASD).

The typical test performance curve for moment versus rotational angle is concave down and increasing as shown in the blue color curve. As a result, the rotational stiffness for RCKW is established by the secant stiffness, which is a red color straight line from zero to the allowable moment as shown below.

rckw2

The rotational stiffness captures connector deflection, stud deflection and fastener slip in various stud thicknesses. Whereas when the connectors are tested in a steel jig fixture, the rotational stiffness includes connector deflection only and not the fastener and stud deflection behaviors. The photos below are examples of member failures which include stud buckling, bottom track tearing, and screws tilting and bearing. These failure modes are reflected in our tabulated loads because of our assembly testing.

rckw34

Designers might wonder why the rotational stiffness is so important and how significant it is in Engineering Design. The IBC 2012 Building Code, Section 1604.3 indicates that structural systems and members shall be designed to have adequate stiffness to limit deflections and lateral drift. Table 1604.3 also provides deflection limits for various construction applications to which the Engineer must adhere.

For example, one of many common applications in CFS construction is the exterior kneewall system below a large window opening subject to the lateral pressure load. This kneewall system must not only be designed to provide moment strength to avoid the hinging failure at the base, but it must also be designed for deflection limits to prevent excess lateral drift that could result in cracking from various types of finish materials.

Since we performed comprehensive testing of full assemblies, engineers do not need to add stud deflection and fastener slip to the calculation. This saves time and eliminates guesswork with their specifications in a common 38 inch kneewall height.

Furthermore, we analyzed the test data to determine connector rotational stiffness, βc, which includes connector deflection, fastener slips, but not the stud deflection.  Connector rotational stiffness allows engineers to perform deflection calculations for assemblies of any height.  Design examples are available in the RCKW Kneewall Connectors flier.

Simpson Strong-Tie recognizes the complexity of performing hand calculations to accurately determine the anchorage reactions for the RCKW connectors. This post on Statics and Testing described how we established loads for our CFS SJC products through testing. We have also provided anchor reaction loads for connectors at allowable moments so engineers could skip this step in the calculations. We measure the anchor reactions by connecting the calibrated blue load cells with the threaded rod that anchors the RCKW connector. The load cell measures the tension forces in the rod directly.

rckw5

Connector strength and stiffness are critical for RCKW products where calculation or interpolation cannot capture the true performance accuracy the same way that testing would. For this reason, we have tabulated values for various stud member depths and thicknesses. Like Paul, I am amazed at the number of tests that go into this product. Ultimately, we can provide complete Engineer Design values that our specifiers can trust in determining adequate strength and stiffness to meet the code requirement.

 

Cold-Formed Steel Connectors

This blog has described how we load rate different products based on test standards, which are covered under various ICC-ES Acceptance Criteria, or ACs. The first was a post on wood connectors (AC13), then holdowns (AC155), threaded fasteners (AC233) and cast-in-place anchors for light-frame construction (AC398 and AC399). I realized today that I have never talked about how we test and load rate connectors for cold-formed steel.

AC261 Joist Test 1

But first, a confession – it has taken me many years to stop calling it “light-gauge steel.” When I started designing with cold-formed steel, I called it “light-gauge” because I had a binder of design information put together by the Light Gauge Steel Engineers Association. Advocates for CFS felt that “light-gauge” may make people think “weak” or “non-structural,” and that perception would limit the use of cold-formed steel in construction. So there was a deliberate effort to banish the word light-gauge and replace it with cold-formed steel, or CFS. I still slip every once in a while.

Connectors for light-gauge, ahem, I mean cold-formed steel members are covered under ICC-ES AC261 – Acceptance Criteria for Connectors Used with Cold-formed Steel Structural Members. The physical testing for cold-formed steel is similar to wood connectors. Build a setup representative of field conditions, apply load till failure and measure the load and deflection data. Both wood-to-wood and CFS connectors have a service limit state of 1/8” deflection.

Strength data for CFS connectors is analyzed much differently, however. Wood connectors generally use a safety factor of 3 on the lowest ultimate load (or average ultimate if six tests are run). We are often asked what the safety factor for CFS connectors is.

AISI S100 Safety Factor

AISI S100 Chapter F details how to determine design strengths for tested CFS products. The design strength is the average test value, Rn, multiplied by an LRFD resistance factor, Φ, or divided by an ASD safety factor, Ω. Determining the resistance factor or corresponding safety factor is based on a statistical analysis dependent on several variables. This is similar in concept to how embedded concrete connectors tested to AC398 or AC399 are evaluated, which I discussed in this post.

AC261 Joist Test 2

I don’t want to get too deep into the Greek letters involved in the calculation. The factors that affect the allowable load calculation are type of member tested, variation in the test values, type of manufacturing, and number of samples tested. One factor that has a large impact on the calculation is the target reliability index, βo. In connector testing, this factor is 2.5 if the structural member (joist, stud, track, etc) fails and 3.5 if the connection fails. The net result is a higher safety factor for test values limited by the connection, and lower safety factors if the structural members governed the test load. Typical safety factors for CFS connectors are 1.8 to 2.0 where the failure mode is in the structural members and 2.2 to 2.9 for tests where the connection failed.

Strength Reduction Factor

AC261 has a reduction factor, RS, which is used to adjust test values if your steel strength and/or steel thickness are over the specified minimum. CFS test setups often use different steel in the joist, header and the connector. Reductions are calculated based on the tested and specified strength and thickness for each member. The lowest reduction is used to adjust the test values.

RCKW Kneewall Setup

RCKW Kneewall Failure

One additional complexity in CFS testing is the multiple gauges of steel which must be evaluated. This requires more CFS test setups than a comparable wood connector would require. In the end, we have what we are really after. Design loads that specifiers can be confident in.

RCKW Load Table

Fire Protection Considerations with Five-Story Wood-Frame Buildings: Part 2

Bruce Lindsey is the South Atlantic Regional Director for WoodWorks The Wood Products Council, which provides free project assistance as well as education and resources related to the design of nonresidential and multi-family wood buildings. Based in Charlotte, NC, Bruce’s multi-faceted career with the industry spans 20 years and includes architectural design, structural design and roles within the engineered wood products industry related to marketing, product management, distribution, consulting and sales.

Last week’s post reviewed some of the common questions WoodWorks receives from engineers designing five-story, Type III wood-frame buildings—including those related to fire retardant-treated building elements, and fire-rated floor and wall assemblies. This week, we extend that conversation to another common issue—details and fire rating of floor-to-wall intersections.

The fire rating of an exterior wall assembly in Type III construction causes a detailing issue where the floor intersects the exterior wall assembly. There are no testing criteria established by the code for system intersections of any material, so detailing must rely on code interpretation. The two points of interpretation focus on continuity of the two-hour wall fire rating and the FRT requirement.

Section 705.6 of the 2012 IBC 1 requires that an exterior wall have “sufficient structural stability such that it will remain in place for the duration of time indicated by the required fire resistance rating.” The ‘interruption’ of the floor in the plane of the exterior wall may be seen by authorities as affecting the structural stability. It is not clear how designers are to comply with this language; for that reason, the language has been removed in the 2015 IBC.

The implication of FRT continuity is derived from the primary requirement that Type III buildings have noncombustible exterior walls. FRT wood is permitted in these walls per IBC Sections 602.3 and 602.4. Since the noncombustibility or acceptable FRT alternative is intended to reduce fire exposure to other buildings, some code officials require FRT material in the plane of exterior walls through the floor intersection. The degree to which a building official believes that the rim joist, floor joist and/or sheathing present a risk of fire spread will determine the degree of FRT material required through the floor-wall intersection.

The manner in which this floor-to-wall connection can be detailed first depends on the type of framing being used—traditional platform framing or semi/modified balloon framing. Platform framing relies on the fact that the floor system bears directly onto the wall below. Semi-balloon framing relies on hangers to support the floor framing.

Typical platform-framed floor-to-wall intersections have been accepted by many jurisdictions without any special detailing according to the rationale that the area of intersection represents “floor framing” and not “wall framing.” In these intersections, the “floor” is not required to be FRT and its fire resistance is limited to one hour. This is similar to the floor conditions found in Type V construction; where such conditions obtain, it’s also logical to extend the same detailing allowances at this intersection to Type III buildings.

While local code interpretation varies widely, a variety of detailing concepts have arisen across the country as possible solutions to this issue.

In one solution, a solid sawn, glulam or engineered rim board is used to create continuity of the two-hour rating through the plane of the wall by using the charring capability of the rim board calculated using Chapter 16 of the NDS. Variations of this detail include a built-up rim board. In some solutions, the member closest on the outside of the wall may also be FRT to provide some degree of FRT continuity. If continuity of FRT through the floor for the entire width of the wall is also required, the entire thickened rim board and possibly the first sheet of floor sheathing may need to be FRT. In some scenarios without heavy FRT requirements, a hanger is not needed if the rim board width that can accommodate the charring is narrower than the width of the wall and the joist can bear on the top plate itself.

Another option is to use a continuous 2x block to achieve one hour of fire resistance, again calculated using Chapter 16 of the NDS. The second hour of resistance is provided by the horizontally applied drywall on the underside of the floor. While the two layers of drywall may not be in the plane of the wall, they still provide two hours of fire endurance. This detail may or may not require that the block and the floor sheathing be FRT, depending on the FRT continuity interpretation. Variations of this detail include an option where the blocking is moved inside the plane of the wall between the joists. Some jurisdictions object, citing concerns about fires starting in the floor cavity. There are other measures, such as fire blocking or cavity sprinklers, provided to minimize spread of fire in these situations. The same question could be asked about fires starting within a wall cavity.

A third option is a slight variation of the second. Instead of using blocking to achieve the one hour of fire resistance, one layer of drywall can extend up behind certain proprietary top flange joist hangers (for SST example, click here). This provides one hour of fire resistance in the plane of the wall, and the second hour is provided by the drywall on the underside of the floor. Some contractors find this detail difficult to accommodate because of construction sequencing — the drywall crew typically does not arrive on site until after rough framing is complete. A variation seen in some areas is using a top-chord-bearing truss, which eliminates the hanger hardware and minimizes the non-treated penetration in the plane of the exterior wall. Addressing full FRT continuity may be more difficult with this variation depending on the truss manufacturer.

A fourth option requires relatively new concepts using connector solutions that allow two layers of gypsum to be applied behind the floor joist connection to the wall (for SST example, click here). Hardware solutions can be a useful option to have available when an Authority Having Jurisdiction is particularly wary of maintaining the integrity of a rated wall assembly, but Designers should consider both the labor and the cost of these details to determine the best fit for the project.

In addition to regional nuances and differing (and evolving) code interpretations, there isn’t one solution that fits all applications. Designers should determine the local availability of FRT products, review manufacturer product specifications and discuss the proposed solution with their jurisdiction.

Available Support

If you’re designing a mid-rise wood building and have questions—e.g., about fire and life safety, lateral and vertical loads, how to address shrinkage, etc.—I encourage you to contact your local WoodWorks regional director. The WoodWorks website (woodworks.org) also offers a wide range of technical information on mid-rise structures and we welcome inquiries to the project assistance help desk (help@woodworks.org).

1Information is based on the 2012 International Building Code unless otherwise indicated.