Good Ideas Come from Many Places — “Necessity Is the Mother of Invention”

You never know where the next great product idea or innovation is going to come from — some of our best new ideas originate with the customers who use our current products. At Simpson Strong-Tie, we welcome any inspiration that can help us serve our customers’ needs even better. With so much competition, however, and because so much research and testing are entailed in developing each new product, the criteria that an idea must meet to gain eventual acceptance are necessarily quite rigorous. In this post, Steve Rotzin, Manager of Intellectual Property and Legal Services at Simpson Strong-Tie, outlines some of these criteria for your consideration.

All of us, at one time or another, dream up a product idea of some sort. My wife was once sanding the tongue-and-groove boards of our living room ceiling and she thought of a very cool idea of gloves that had Velcro on them and users could interchange sandpaper of various grit on any finger of the glove. If you’ve ever sanded anything, this actually made a lot of sense especially for complex shapes and tough to reach spots. I researched it and found out that someone had already thought of it and “patented it.”

We are no different here at Simpson Strong-Tie Company. We are constantly thinking of ways to make the very best products, incorporating innovative features to make the installation as easy and cost effective as possible. We also strive to exceed the performance requirements of the application in order to help build the strongest, safest possible structures. While these ideas are something we think about day in and day out, we also know you think about solutions as well. It’s you who encounter circumstances where our parts may not work as needed or fail to meet a specific need or application. These are the times we receive ideas from customers hoping we might adopt or develop an idea to meet their needs.

Annually, we receive a number of ideas from outside the company, even though they’re not something we actively solicit. The truth is that product ideas from consumers, especially ideas that come from consumers who work in the construction industry, are often relevant and timely. To make it easier for you to share feedback and ideas, we’ve set up a process whereby anyone who has an idea they’d like to share, can submit it to us for evaluation.

Here are some tips to help your product idea receive our fullest consideration, :

  1. Do Your Research — Has someone invented this before? You might be surprised by how many ideas have come and gone. Ideas that we think are novel and have never been attempted by anyone else have often been manufactured, sold and put out to pasture years before we thought of them. So do some research. Also, just because you don’t see the exact same thing doesn’t mean the elements which could be patented, or protected, in your device haven’t been claimed before in someone else’s patent.
  2. Protect Yourself — Make sure you’ve taken steps to ensure you are protected. Did someone else help you? Could someone else claim ownership? Have you filed for a provisional application with the United States Patent and Trademark Office? We cannot offer legal advice, but seeking legal advice from a patent professional is always a good idea.
  3. Cost Considerations — When we receive ideas, often those ideas overlook cost. Yes, they serve a need, but they’d probably never be manufactured or purchased because they would cost several times more than the market will bear. You can build a better mousetrap, but that doesn’t mean anyone will buy it. Be sure you’ve considered how much steel or material your product is using. Also, consider that things like “door hinges” and secondary manufacturing processes are steps that add cost and most likely will make the product too expensive to the end user. A product that significantly increases a structure’s overall volume or thickness isn’t advisable, either. Those are just a few factors you may want to consider.
  4. Approvals — Please consider what approvals your product might require. Products that arrive at Simpson Strong-Tie with ICC code reports, UL listing, IAPMO or other approvals or that are already patented receive the highest attention.
  5. How to Submit — if you’re still interested in submitting to Simpson, please visit strongtie.com/ideas. Print the documents, fill them out and return them to the name at the bottom of the form. Please be sure you’ve included pictures or drawings of your product or application.
  6. Timing — It may take some time for us to review your idea. Simpson does review most ideas, and those ideas that have all the elements discussed above usually receive the quickest response. If you have any questions, you are welcome to reach out to us.

Thank you for considering Simpson for your ideas.

 

What You Should Know About the New DGH Fire Wall Hanger Options

Does everyone do year-end performance reviews to discuss how you did on your project objectives and professional development goals? I love meeting with my team to recap all their amazing accomplishments for the past year, discussing long-term career plans and figuring out the steps we will take to implement those plans over the next six months, year, and beyond. I hate, hate, hate, hate doing all the paperwork that HR requires – but I am done with it now, so I’ll get over it.

One of our new product objectives for 2017 was to create a new fire wall hanger that could be installed before the drywall. Creating a joist hanger that can span a gap while still meeting the target loads was a challenging task. We released the DG series of fire wall hangers in July. I discussed the use of fire wall hangers in Why Fire-Rated Hangers Are Required in Type III Wood-Frame Buildings.

Before we finished developing the DG series of hangers, we had already started design and testing for skewed and offset top-flange options. As much as engineers love buildings that look like rectangular boxes, the real world isn’t always square, and framing isn’t always perpendicular.

My colleague, Randy Shackelford, did a series of blog posts about how to specify a hanger, which covered joist hangers, truss hangers and custom hangers. Among the many issues Randy discussed, an important one for engineers is that customized hangers with skews or offset flanges have load reductions. Some reductions are small, and some can be large. One thing the reductions have in common is they are determined through testing.

Like other skewed or offset top-flange hangers, modified DGH hangers have load reductions due to differences in performance when compared to the standard versions. With many of our hanger options, we provide adjustment factors, which Randy covered in his posts mentioned above. Since there are only four loads for the skewed or offset DGH hangers, we tabulated and published the allowable loads in a new flier, F-C-DGHSKEW.

I am still adjusting goals for my team for 2018. Maybe we’ll see about proposing a building-code change to require buildings to be square. Until then, Simpson Strong-Tie will keep your hanger options open.

 

New CSS Product Launch — FRCM Strengthening Products

The new FRCM Composite Strengthening Systems™ repair and reinforcement solution from Simpson Strong-Tie combines high-performance sprayable mortar with a carbon-fiber grid that creates a thin structural layer that repairs and strengthens without significantly increasing the structure’s weight or volume. FRCM stands for fabric-reinforced cementitious matrix. Its advantages are similar to those of FRP (that is, strength, low weight and ease of application), but it may also be used to repair, resurface, strengthen and protect in one application, along with providing greater resistance to heat and better long-term durability.

Significant flexural, axial or shear strength gains can be realized with an easy-to-apply composite providing a low-impact, low-weight alternative to traditional concrete strengthening and retrofit methods. Typical applications include tanks, silos, tunnels, pipes, parking garages and marine infrastructure.

• Projects that also require a surface repair and leveling in addition to strengthening
• Projects with large, overhead or vertical surface areas where shotcrete applications may afford the highest production rates
• Repair applications that cannot afford significant member enlargement
• Composite strengthening applications that require an increased level of abrasion and fire resistance

American Concrete Institute (ACI) provides a design guide for FRCM materials titled ACI 549.4R-13 Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry Structures. While our Designers sit on this committee, we also provide no-cost design services based on the recommendations in this guide.

Simpson Strong-Tie Can Help
We recognize that specifying Simpson Strong-Tie Composite Strengthening Systems is unlike choosing any other product we offer. Leverage our expertise to help with your FRP and FRCM strengthening designs. Our experienced technical representatives and licensed professional engineers provide complimentary design services and support – serving as your partner throughout the entire project cycle. Since no two buildings are alike, each project is optimally designed to the Designer’s individual specifications. Our pledge is to address your specific condition with a complete strengthening plan tailored to your needs, while minimizing downtime or loss of use, at the lowest possible installed cost.

Your Partner During the Project Design Phase
During the Designer’s initial evaluation or preparation of the construction documents, Simpson Strong-Tie can be contacted to help create the most cost-effective customized solution. Simpson Strong-Tie Engineering Services will work closely with the Designer to provide all the information required to design the system. The solution we deliver will include detailed design calculations for each strengthening requirement and design drawings with all the necessary details to install the CSS.

Why Use Simpson Strong-Tie Design Services?

  • To assess feasibility studies that will help ensure suitable solutions for your application
  • To receive customized FRP and/or FRCM strengthening solutions
  • To work with our trained contractor partners to provide rough-order-of-magnitude (ROM) budget estimates
  • To collaborate during the project design phase
  • To receive a full set of drawings and calculations to add to your submittal
  • To maintain the flexibility to provide the most cost-effective solution for your project
  • To gain trusted technical expertise in critical FRP and FRCM design considerations

For complete information regarding specific products suitable to your unique situation or condition, please visit strongtie.com/frcm or call your local Simpson Strong-Tie field engineer or RPS specialist at (800) 999-5099.

If you are interested in learning more about FRCM and how it compares to other strengthening methods visit our Training Center now. The course discusses installation steps, identifies projects where FRCM would be ideal, and cites testing and industry standards that are associated with FRCM. You can view at your convenience and earn 1 hour of CEUs, PDHs and AIA LU/HSW credits.

Upcoming Webinar – Introducing Fabric-Reinforced Cementitious Matrix (FRCM)

February 14 marks the third interactive webinar in the Simpson Strong-Tie Composite Strengthening Systems™ Best Practices Series: “Introducing Fabric-Reinforced Cementitious Matrix (FRCM).

Join Simpson Strong-Tie engineering manager Brad Erickson, S.E., P.E., and Simpson Strong-Tie senior product manager Mark Kennedy, PMP, for an informative discussion of this new product solution. Attendees will have the opportunity to ask questions during the live event.

Continuing education credits will be offered for this webinar.
Participants can earn one professional development hour (PDH) or 0.1 continuing education unit (CEU).


A New Way to See Whether FRP Is Right for Your Project

This week’s post was written by Griff Shapack, FRP Design Engineer at Simpson Strong-Tie. 

Specifying our Composite Strengthening Systems™ (CSS) is unlike choosing any other product we offer. In light of the unique variables involved with selecting and using fiber-reinforced polymer (FRP) solutions, we encourage you to leverage our expertise to help with your FRP strengthening designs. To get started, we first need to determine whether FRP is right for your project. The fastest way to do that is for you to fill out our Design Questionnaire. Our new Excel-based questionnaire collects your project information and helps you use the existing capacity check to evaluate whether or not FRP is suitable for your project per the requirements of ACI 562-16 Section 5.5.2. After the feasibility study, the questionnaire creates input sheets specifically for your project.

Getting Started

Step 1

Open the FRP Design Questionnaire spreadsheet using Microsoft Excel. If a yellow warning appears at the top of the sheet, click “Enable Content” to ensure that the workbook will function properly. You will start on the worksheet tab named “Main”. “Main” will be the only worksheet tab when you begin, but more worksheet tabs will be created as you use the spreadsheet.

Step 2

Enter the project information and your contact information in Section 1 of the worksheet. The contact information should be for the Designer that you would like Simpson Strong-Tie to work with for this project’s FRP design. See Figure 1.

Step 3

Enter the FRP strengthening information in Section 2 of the worksheet. If the application will require an existing capacity check, an input form requesting the information needed for the check will appear in Section 3 of the worksheet.

Figure 1. Project information and FRP strengthening information.

Step 4                                                                                                                        

For members that support gravity loads, an existing capacity check must be performed to verify that FRP strengthening is suitable before a design can be generated. For these members, the spreadsheet will generate a check table for you in Section 3 of the worksheet. Enter the number of members to be checked and the dead load (D), live load (L) and snow load (S) for each member. Use consistent units for the input. See Figure 2. The spreadsheet will calculate the demand-to-capacity ratio (DCR) for each member. The ratio must be less than or equal to 1.0.

  1. A result of “OK” means the existing capacity check is passed. Proceed to Step 5 below.
  2. A result of “NG” (no good) means the existing capacity check is failed and FRP strengthening is not likely to be suitable. However, consider contacting Simpson Strong-Tie about your design condition to ensure that this is the case.

Figure 2. Existing capacity check.

Step 5

You are now ready to create an element input worksheet for those members that passed the existing capacity check. Click “FRP Questionnaire” from the Excel menu bar. Then click the “Input Sheet” button in the ribbon bar. See Figure 3.

Figure 3. “Input Sheet” button.

This will create an element input worksheet as a new worksheet tab. See Figure 4.

Figure 4. Element input worksheet.

Enter the number of elements to be checked and fill in the design information for each member. The “No. of elements” cell features a drop-down menu with the numbers 1–5, but any number can be typed into the cell. (Each member should have passed the existing capacity check in Step 4.) See Figure 5.   

Figure 5. Element input worksheet.

Step 6

If you would like to add different member types that need to be strengthened, click “Another Type of Strengthening” button in the ribbon bar. See Figure 6. This will create a new “Main” worksheet. Repeat the steps above, until all strengthening types and member data have been entered.

Figure 6. “Another Type of Strengthening” button.

 Step 7

When you have finished inputting all required data, save the spreadsheet file and email it to css@strongtie.com. You should expect confirmation of receipt from us within one business day.

From there, if FRP is a viable option, you can decide to utilize our no-cost, no-obligation design services. Our team will design a unique solution specifying the most cost-effective CSS products that address your particular needs. The design calculations, drawings, notes and specifications are prepared by Simpson Strong-Tie Engineering Services and can then be incorporated into the design documents that you submit to the building official.

Don’t know which FRP solution is the right one for you? We do. Give our new Design Questionnaire a try, and let us be your partner during the project design phase. Our new Excel-based questionnaire collects your project information and helps you use the existing capacity check to evaluate whether or not FRP is suitable for your project per the requirements of ACI 562-16 Section 5.5.2 or AASHTO FRP Guide Spec Section 1.4.4. After the feasibility study, the questionnaire creates input sheets specifically for your project. For projects in Canada designed per the requirements of CSA S806 or CSA S6, please use our fillable PDF questionnaire to collect your information.

Learn more at strongtie.com/products/rps/css/frp-engineering-design.

Introducing Fabric-Reinforced Cementitious Matrix (FRCM)

February 14 marks the third interactive webinar in the Simpson Strong-Tie Composite Strengthening Systems™ Best Practices Series: “Introducing Fabric-Reinforced Cementitious Matrix (FRCM).

Join Simpson Strong-Tie engineering manager Brad Erickson, S.E., P.E., and Simpson Strong-Tie senior product manager Mark Kennedy, PMP, for an informative discussion of this new product solution. Attendees will have the opportunity to ask questions during the live event.

Continuing education credits will be offered for this webinar.
Participants can earn one professional development hour (PDH) or 0.1 continuing education unit (CEU).


Beat Building Drift with the New DSSCB Drift Strut Slide Connector from Simpson Strong-Tie

This week’s post was written by Clifton MelcherSenior Product Manager at Simpson Strong-Tie.

Structural engineers concerned with building envelopes are always looking for better solutions that help isolate the cladding from the primary structure in conditions where large building drift is a concern. Simpson Strong-Tie has an answer with a unique and innovative solution, the new DSSCB (drift strut sliding clip bypass).

The DSSCB is used to anchor cold-formed steel framing to the primary structure in bypass applications. The DSSCB is a clip that slides inside standard struts that most engineers and contractors are already familiar with. These struts will typically be attached to structural steel. However, there is also a cast-in-place strut option referred to as a strut insert. Many different manufacturers of these struts exist, but three common manufacturers are Unistrut®, PHD and B-line. The strut and strut insert requirements for the DSSCB can be found in the Simpson Strong-Tie DSSCB flier (F-CF-DSSCB17).

The DSSCB has many design features that make it easy to use, cost-effective and designer-friendly.

  • The DSSCB clip has uniquely formed inserts that twist into place easily with minimal friction
  • The clip features squaring flanges that help keep the clip square inside the strut
  • Shoulder screws (included) prevent over-drilling and increase overall capacity
  • Pre-engineered design offers clip, strut and anchorage solutions
  • Pre-punched slots provide a full 1″ of both upward and downward deflection
  • Sight lines facilitate proper screw placement

The DSSCB is also a hybrid clip and accompanies both slide applications as well as fixed applications. In addition to vertical slots, the clip also has round circular holes for fixed-clip conditions. This will make the clip more versatile and limit inventory.

Another great use for this product is for panelized construction. The DSSCB makes it a snap to anchor finished panels to the slab without having to waste time drilling and installing anchors. Locking panels into place is also simple with a DSHS connector clip that can be easily slid into place and attached with only one (1) #10 screw.

Accommodating for building drift and commercial panel construction just got easier with the Simpson Strong-Tie DSSCB!

Design Example

Load required at bypass slide condition attached to steel with ASD reactions of 450 lb. tension (F2) and 422 lb. compression (F3) – based on CFS DesignerTM software or hand calculations

Stud member = 600S162-43 33 ksi at 16″ o.c. – based on CFS Designer software or hand calculations

Per page 4 of the DSSCB flier (F-CF-DSSCB17), allowable F2 = 785 lb. and F3 = 940 lb. for slide-clip connector (shown below)

Per page 7 of the DSSCB flier (F-CF-DSSCB17) allowable loads of F2 = 475 lb. and F3 = 2,540 lb. for strut allowable anchorage with 1″ weld at 12″ o.c. using a 13/16″ strut (shown below)

Note that, at a strut splice (if required), maximum load is not to exceed F2 of 865 lb. per note 6 on page 7 (shown below)

6.  For any connector occuring within 2″ of channel strut splice, load not to exceed — F= 865 lb. and F= 785 lb.

Check connector and strut/anchorage:

F2 (tension):                           Pmax = 450/ minimum of (785,475) = 0.95 < 1 ok

F3 (compression):               Pmax = 422/ minimum of (940,2540) = 0.45 < 1 ok

FAQs:

Q: How are the products sold?

A: The clips are sold in kits of 25. For the DSSCB43 and DSSCB46, one polybag of 83 screws is included. For the DSSCB48, two 55 screw polybags are included. The DSHS will be sold separately from the clips and come in bags of 100. The struts will not be sold by Simpson Strong-Tie.

Q: Can I use the 1 5/8″ x 1 5/8″ strut for the fixed-clip application?

A: No, the fixed-clip application was tested only with the 13/16″ x 1 5/8″ strut. The 1 5/8″ x 1 5/8″ strut would overhang more, which we calculate could reduce capacities.

Q: When should I use the DSHS clip?

A: The DSHS clip should be used where you want to fix the clip in place in the F1 (in-plane) direction. This clip will most likely be used for panelizing, but could be used for stick framing as well when adjustment is required before locking the clip in place.

Q: Why are there two tables that I need to use to determine my connector capacity?

A: One table is for the capacity of the clip, and the other table is for the capacity of the strut/anchorage. Two tables give the designer more flexibility in the design as well as an understanding of what is controlling the failure.

Q: How do I accommodate load requirements at a strut splice?

A: Note 6 to the Strut Channel Allowable Anchorage Loads to Steel table states the capacity of the strut with a clip directly at the splice. The values are based on assembly testing. Refer to page 7 of the flier.

Q: How do I accommodate load requirements at the strut end?

A: Note 10 to the Strut Channel Allowable Anchorage Loads to Steel table states that the connector load is to be located a minimum of 2″ from the end of the strut channel. Note 2 to the Concrete Insert Allowable Load Embedded to Concrete table gives a reduction capacity for end conditions. Reference pages 7 and 8 of the flier.

Q: Why do we show an F1 load on a drift clip?

A: The drift clip without the DSHS does not support any load in F1 direction. F1 load is only supported if a DSHS clip is used in conjunction with the DSSCB clip. This is also noted (note 4) on the DSSCB Allowable Slide-Clip Connector Loads and the DSSCB Allowable Fixed-Clip Connector Loads tables. Refer to pages 4 and 6 of the flier.

Q: How do I accommodate higher concentrated loads at jambs exceeding my typical stud loads?

A: Note 7 to the Strut Channel Allowable Anchorage Load to Steel table gives the capacity of the strut/anchorage if the strut is welded directly at the clip. Refer to page 7 of the  flier.

Q: Can I drive PAFs into my strut?

A: No. The shot pin tool will not fit inside the strut channel.

Q: If I want to attach my strut to the steel edge angle with screws, what brand should I use?

A: Simpson Strong-Tie makes great fasteners, and we would recommend these fasteners (#12-24 Strong-Drive® Self-Drilling X Metal screw). However, you can use any brand fastener provided they meet our Pss and Pts capacities minimum nominal strength values in General Notes for Allowable Connector Load Tables on page 8 of the flier.

Q: At a double-stud condition, is it acceptable to double the capacity if I use two (2) clips?

A: It is acceptable to double the capacity of the DSSCB slide-clip or fixed-clip table loads (pages 4 and 6 in flier). However, the load should not exceed the load listed in the Strut Channel Allowable Anchorage Loads to Steel table (page 7 in flier). If a load is exceeded, please follow note 7 on page 7 of the flier by adding a weld connection directly at the concentrated load. This will allow you to have a wider anchor spacing for your typical studs and only reinforce the higher concentrated loads with connections directly at these locations.

Introducing the New and Improved Simpson Strong-Tie Strong-Wall® Bracing Selector

This week’s post was written by Caleb Knudson, R&D Engineer at Simpson Strong-Tie.

It’s been said that the World Wide Web is the wave of the future. Okay, maybe this is slightly outdated news, as it’s been 25 years since Bill Gates penned his internet tidal-wave memorandum, but it’s a good lead-in to this week’s blog topic – web apps. More specifically, those apps that have been developed to address the wall-bracing requirements defined in the International Residential Code® (IRC). Designers and engineers have no doubt noticed that over the last several code cycles, the wall-bracing provisions in the IRC have become increasingly complex. To help navigate these requirements and calculate the required bracing length for a given wall line, Simpson Strong-Tie introduced the Wall-Bracing-Length Calculator (WBLC) a few years back, as discussed in an earlier blog post. I’ll also mention that the WBLC has since been updated to the 2015 IRC.

Those familiar with the wall-bracing provisions in the IRC know that there are twelve intermittent wall-bracing methods and four continuous-sheathing methods to address wall-bracing requirements. Each of these methods may be used in most applications, and, while some provide advantages over others, the code-based methods provide Designers with quite a bit of flexibility. However, there may be cases where the site-specific conditions are beyond the scope of the IRC, or there just isn’t enough available full-height wall space to accommodate the required wall-bracing length. These cases are most likely to occur at large window openings or at garage fronts.

Let’s take the following example of a house on Lake Washington – assuming the house is being designed in accordance with the IRC. Presumably, one might prefer to have unobstructed lake views, which of course means lots of large picture windows and not much room left for braced wall panels. Let’s also suppose you’ve got a brand-new Chris Craft that you’d like to protect against the weather when it’s not in the water – this means wide garage doors and, again, not much room for conventional wall bracing.

So what do we do now?

Thankfully, the International Residential Code provides some guidance. Section R301.1.3 states that when a building, or portion thereof, is outside the scope of the IRC, the element(s) may be designed in accordance with accepted engineering practice. The code goes on to state that the extent of the design shall be such that the engineered element(s) are compatible with the performance of conventional methods prescribed in the code. That creates some additional options for our tool box. We could design a site-built shearwall; however, due to aspect-ratio limitations defined in the Special Design Provisions for Wind and Seismic (SDPWS), we still may not be able to get the lake views and wide garage we want. The next option, and one we’ll focus on here, is the code-approved prefabricated Simpson Strong-Tie® Strong-Wall® shearwall.

In an earlier blog post, as previously mentioned, we introduced the Strong-Wall Bracing Selector (SWBS) and defined just how we determine equivalence to conventional bracing methods. We further described the benefit of using the selector in conjunction with the Wall-Bracing-Length Calculator (WBLC). To refresh your memory, when Designers start with the WBLC to determine required wall-bracing-lengths for up to seven parallel wall lines, they can export those bracing lengths as well as project and jobsite information directly to the SWBS with the click of a button. The SWBS will then provide a list of Strong-Wall panels that provide an equivalent bracing length, evaluate their anchorage requirements, and return a list of pre-engineered anchor solutions for a variety of foundation types.

On to the present: We just launched the Strong-Wall Bracing Selector web app version 2.0, and there are a few new features worth noting.

First, I’ll mention that all Strong-Wall solutions have been evaluated according to the 2015 I-Codes. Next, and hopefully this doesn’t come as too much of a surprise, the original wood Strong-Wall shearwall (SW) is being phased out with guaranteed availability through December 31, 2018. In light of this planned obsolescence, we have removed the SW solutions from the latest version of the bracing selector.

Here’s the good news – and this is big: We’ve now added the new Strong-Wall wood shearwall (WSW) to the app and recommend this as a replacement for the SW in all applications. In the interim, while the original wall is still available, version 1.0 of the bracing selector app may be used if an SW bracing solution is required.

Lastly, we’ve provided the Designer with a bit more flexibility and control over the Strong-Wall bracing solutions provided by the app. If you recall, version 1.0 provided a solution using the minimum possible number of Strong-Wall panels to satisfy the bracing length requirement. We’ve changed that in version 2.0; Designers may still select a solution using the minimum number of panels, but they may also select the exact number of Strong-Wall panels to satisfy their wall-bracing-length requirements. Typically, it’s desirable to address the bracing requirement with the minimum number of Strong-Wall shearwall panels possible. Sometimes, however, it may be advantageous to increase the number of panels used, in order to decrease the Strong-Wall panel width used for a solution or to reduce anchorage requirements, i.e., lesser footing dimensions and anchor embedment depths. Stated a little differently, we’re providing the option to find the right balance between the braced wall panel design and the anchorage design – i.e., the Goldilocks zone for prescriptive wall bracing.

So now that we’ve reviewed just why a Designer may need to specify a Strong-Wall shearwall in prescriptive applications and how the Wall-Bracing-Length Calculator and Strong-Wall Bracing Selector web apps help to navigate this process, we’re interested to see what you think. Is there any additional functionality that you’d like to see in the future, or are these apps just right for your design needs? Let us know in the comments below.

Q&A About CFS Designer™ Software

I recently had the pleasure of presenting a webinar with Rob Madsen, PE, of Devco Engineering on our CFS Designer software, “Increase Productivity in Your Cold-Formed Steel Design Projects.” The webinar took place on September 28, and a recording is available online on our training website for anyone who wasn’t able to join us. Viewing the recording (and completing the associated test) qualifies for continuing education units and professional development hours. The webinar covers how to use the CFS Designer software to design complex loading conditions for beams, wall studs, walls with openings, and stacked walls using cold-formed steel studs, tracks, built-up sections, and even custom shapes. We received some excellent questions during the webinar, but due to time constraints were only able to answer a few during the live webinar. Rob and I did get a chance to answer all the questions in a Q&A document from which I’d like to share some excerpts. The complete Q&A webinar list can be accessed here, or through the online recording.

Where can I download the CFS Designer program?

Please visit strongtie.com/cfsdesigner to download a free 14-day trial version of the software or to purchase a license. Webinar attendees should check their email for a special discount code. There are different licensing options based on the number of users.

Is the price for the software an annual subscription fee or is it a one-time purchase price? Is there any maintenance cost?

There’s no annual maintenance fee or subscription fee. You pay only a one-time fee for the license. CFS Designer is based on an update-and-upgrade program. All updates to the program are free to licensed users and occur every few months to correct software bugs and add functionality. Upgrades, which include new design modules and updated code information, will require an additional purchase. Simpson Strong-Tie anticipates releasing upgrades on a two-year cycle, and the next upgrade has a projected release of early 2019. If you elect not to upgrade your version of the software, the current version you have will still work, but will not have the new upgrade features.

Is CFS Designer fully compliant with AISI S100-12?

CFS Designer is compliant with AISI S100-12. You can also access earlier versions of the AISI Specification in CFS Designer by selecting Project Settings/Code and selecting the version.

Are load inputs in ASD or LRFD? Do the load combination factors have to be applied prior to entering loads in the program? Should factored or unfactored loads be input?

The current software is all in ASD (allowable strength design). The next upgrade version will feature up to eight stories of stacked x-bracing and shearwalls, which will be in LRFD. Everything else will be in ASD. The stacked x-brace and shearwalls will be LRFD because of the ACI requirements for concrete. We will also make it much more clear in this version which input is ASD and which is LRFD.

What is a web stiffener? How would you use one at a stud, header, or jamb?

A web stiffener is typically a stud or track piece that is used to support the wall stud or joist from crippling at a point load or bearing support. There are different ways to design a stiffener at different locations. Some examples include using a cut piece of stud or track attached to the stud or using a clip attached to the beam. Essentially, a web stiffener is a member that is added to the stud to help stiffen the stud from crippling.

Does this program take into consideration the cold work of forming in the design/analysis?

Yes, per AISI the program’s Project Settings default is to include cold work of forming in the design and analysis.

We generally try to size our cold-formed members to avoid the need for web stiffeners, just to save on construction and material costs. Something that helps quite a bit with the web bending and crippling calc is the bearing length. Are there code requirements for bearing lengths, or is this simply based on how much bearing we anticipate the member to have at its supports?

There are no specific code requirements for calculating bearing length for web crippling; the calculation is usually based on engineering judgment and connection detailing to determine how much bearing there will be at the support. A reasonable bearing length may be the length of the connection clip you are using for the attachment. Since web crippling is a “bearing” phenomenon, where attachments are made through the web, provided the attachment is not isolated near a flange, you may not need to consider web crippling. For stud-to-track types of connections, it’s common to use the track leg length as the bearing length.

Does this software give any stud-to-stud connection calculation like stud tearing and shearing? Checks?

The studs are designed per the AISI code for shear, moment, web crippling, axial load, and the related code-required interactions. Net-section rupture near connections is not checked by the CFS Designer™ software.

What is the difference between flexural bracing and axial bracing?

Flexural bracing is bracing that is used to increase the moment capacity of the stud, and axial bracing is bracing that is used to increase the axial capacity of the stud. These might be the same for your design, but we have given the user the ability to designate different spacings.

Do you have recommendations for how to properly terminate bridging at the end of the wall?

We agree that termination of bracing is often overlooked by engineers and should definitely be considered in design. Accumulation of bridging forces should also be considered. AISI S100-12, D3.3 and AISI S240-15 D3.4 provide methods of estimating brace forces. Simpson Strong-Tie has provided some suggestion in our cold-formed steel typical details sheets that show our SFC clip as one method to properly terminate a line of bridging.

Can the kicker connection be used on the underside of concrete fill over metal deck?

Yes! The SJC kicker connection has been tested and code listed to support diagonal brace loads. Simpson Strong-Tie has also provided a wide range of anchorage solutions for the kicker application that include connecting to the underside of concrete fill over metal deck. Concrete over metal deck may be normal weight or sand-lightweight with f’c of 3,000 psi minimum and 2.5″ minimum slab height above upper flute. Minimum deck flute height is 1.5″ (distance from top flute to bottom flute). Please visit strongtie.com for more information and design tables.

Why do some engineers use steel posts welded to a base plate for low wall applications?

For walls that are not top-supported, some Designers use a welded steel post at a certain spacing and infill with cold-formed steel studs and a top track. Simpson Strong-Tie has developed an innovative moment-capacity connection called the RCKW rigid kneewall kit, which can support many of these same conditions using cold-formed steel studs and eliminate the need for structural steel.

Are there any plans to expand the software capabilities?

We have a long list of enhancements and additions for the software and will continue to make the software more efficient, more user friendly, and with additional design capabilities.

Thanks again to everyone who joined us for the webinar and sent us questions. For complete information regarding specific products suitable to your unique situation or condition, please visit strongtie.com/cfs or call your local Simpson Strong-Tie cold-formed steel specialist at (800) 999-5099.

The Top 5 Helpful Tips for Using CFS Designer™ to Optimize Your Workflows

Back in April of last year, I had the opportunity to show how our new CFS Designer software  could help structural engineers “go lean” in their design process by eliminating repetitive tasks (while still meeting required design standards, of course!). Since then, I’ve had the opportunity to visit with hundreds of engineers in person to teach them about CFS Designer and how it can help them improve and optimize their workflows. As a power user of the software, I want to share my top tips for letting CFS Designer help you save the maximum amount of time.

Tip #1. You need to create only one design file for each project.
CFS Designer has to generate lots of code-compliant designs quickly, but that doesn’t mean you need to end up with dozens of unrecognizable file names on your desktop. The software includes a very handy WorkSpace area in the lower left-hand area of the screen that enables you to save all your wall, jamb, header, and general interaction designs in a single project space. This means that you will be saving only ONE file for each project, a feature that can save you a lot of confusion over time.

Figure 1. The orange box is highlighting the file name (which doubles as the Project Name on the summary reports), which shows up at the top of the WorkSpace area. In this example, I’ve added just one beam/stud model for the sake of simplicity.

Tip #2. Quickly duplicate similar wall sections or design types by right-clicking on the model name in the WorkSpace.
On cold-formed steel projects, there are often very similar wall sections or jambs that you’ll need to design. They may have slightly different parapet heights, different loading or different wall widths. Instead of starting from scratch and creating a new section every time, CFS Designer allows you to right-click on any existing design. The right-click action brings up a “Duplicate” pop-up which lets you create an identical model in your WorkSpace. You then have the ability to change the model name, make slight modifications, and then re-save your project to see it show up as a new model in the WorkSpace area.

Figure 2. Here’s where to right-click in order to get the “Duplicate” pop-up to appear.

Tip #3. Expand the “Member Forces” and “Connection Summary” sub-menus in the Beam Design module to get real-time updates of the reaction loads, member stresses and connection solutions.
A critical area of member design is the reaction points, because it doesn’t really matter whether your cold-formed steel member is adequately designed if the connection points don’t have a solution. Many engineers I met with thought they had to click on the “Summary Report” button every time they wanted to know the reaction forces, waiting anywhere from 10 to 15 seconds for the PDF file to load and then having to scroll through to find the correct section. Thankfully, there’s a much quicker way to view the reactions. CFS Designer instantly updates the reaction values on the design screen, but the onscreen menus that have this useful information need to be opened up first. Within the Beam Design module, click on the small down arrows to the left of “Member Forces” and “Connection Summary,” and that will expand these two useful sections and display the design information without your having to wait and generate the output. On a related note, another useful area to keep an eye on during design is the very bottom of the screen, where green text will let you know when your maximum member stress and web crippling check are compliant, red text will alert you if your member design is insufficient, and the deflection ratio limit is always displayed.

Figure 3. Here’s where to find the collapsed “Member Forces” and “Connection Summary” menus.

Figure 4. Click on the arrows to the left of the menu titles to see your important design information in detail.

Tip #4. Use the “WorkSpace Report” button for a one-click method of combining ALL the individual summary pages into a single PDF file.
After you’re done generating all your different models and saving them to your WorkSpace, you’re probably going to want to generate the output files you can print and add to your calculation package for submittal. One engineer I met with a couple of years ago told me that this was the most dreaded step because it meant she had to open each model, click on the “Summary Report” button, wait those 10–15 seconds for the PDF file to generate, and then print it out or save it. For large projects, this would need to occur 20–30 times – yikes! Thankfully, a huge part of the development of CFS Designer relies on feedback such as this to help Simpson Strong-Tie continuously improve the program’s functionality. The latest version of CFS Designer introduces a “WorkSpace Report” button, which takes a single click to create all of the summary reports for each model type, saved in a single PDF file.

Figure 5. Be sure to use the “WorkSpace Report” button to save yourself a ton of time generating all your printable output.

Tip #5. Use the onscreen tip pop-ups. Small gray question mark icons are strategically placed throughout CFS Designer to offer helpful tips and tricks for specific input boxes.
Structural engineers are expected to know a lot, but it isn’t always necessary to remember all the details if you know where to look them up. Because the information requested by some of the input boxes may not be completely self-evident, we built in some handy pop-up tips to help out. A small gray circle with a question mark inside makes its appearance next to input boxes. Hovering your mouse over one of these question marks will cause an info box to appear, letting you know what information is required, what code section to reference, or what design methodology is being used. I have found these pop-up tips to be immensely helpful, especially in conjunction with the program’s User’s Manual (located under the Help menu, at the top of the program).

Figure 6. I got this box to pop up by hovering over the question mark next to the “Load Modifiers” section of the Beam Input module. If you search for “Load Modifier” in the User’s Manual, it will direct you to the relevant AISI code section.

I’ve had fun sharing some of my top tips with everyone today, but there is a great opportunity coming up to learn even more about our CFS Designer software from one of the original developers of the software. Join me and Rob Madsen, P.E., Senior Project Engineer from Devco Engineering, for a one-hour live demo of the software and connection solutions. Rob has been described as one of the premier structural engineers in the cold-formed steel design arena, and he will walk you through detailed wall stud, jamb, header and stacked wall design examples using CFS Designer. I’ll be presenting on the innovative, tested and code-listed product solutions that Designers can use to save time in addressing the critical connection points in CFS design. We hope you can join us for the live demo, but if you have other commitments at that time, a recording of the webinar will be made available on our website for your viewing convenience. The course will also earn professional development hours (PDHs) and continuing education units (CEUs) for any folks who need credits to renew their professional licenses.

Bonus Tip: Sign up for our upcoming CFS Designer™ webinar on Thursday, September 28!

Further Reading

For additional information or articles of interest, check out these available resources:

    • AISIStandards – A free download of all the cold-formed steel framing standards adopted by the 2015 International Building Code.

 

    • CFSEI – The Cold-Formed Steel Engineering Institute, an incredibly useful technical and professional resource for Designers of cold-formed steel structures, with a huge library of technical notes.

 

 

 

Q&A About Advanced FRP Strengthening Design Principles

Our thoughts go out to everyone affected by Hurricane Harvey and this disaster in Texas. To help with relief efforts we are donating $50,000 to the American Red Cross Disaster Relief Fund. Employees at our Houston warehouse are safe and the employees from our McKinney branch will be doing as much as they can to help with relief efforts.

This week’s post was written by Griff Shapack, PE. FRP Design Engineer at Simpson Strong-Tie.

On July 25, 2017, Simpson Strong-Tie hosted the second interactive webinar in the Simpson Strong-Tie FRP Best Practices Series, “Advanced FRP Design Principles,” in which Kevin Davenport, P.E. – one of our Field Engineering Managers – and I discussed the best practices for fiber-reinforced polymer (FRP) strengthening design. The webinar examines the latest industry standards, proper use of material properties, and key governing limits when designing with FRP and discusses the assistance and support Simpson Strong-Tie Engineering Services offers from initial project assessment to installation. Watch the on-demand webinar and earn PDH and CEU credits here.

During the live webinar, we had the pleasure of taking questions from attendees during the Q&A session. Here is a curated selection of Q&A from that session:

While I see how you improve the flexural capacity of a beam, how do you increase its shear capacity to match new moment strength?

ACI 440.2R recommends checking the element for shear if FRP is used to increase flexural strength. U-wraps can be used to provide shear strengthening of a beam.

Are there any “pre-check” serviceability checks (deflection, vibration, etc.) similar to the ACI 440 strength check that you recommend when considering the use of FRP?

ACI 440.2R contains a few serviceability checks on the concrete, rebar and FRP that can be performed once you have designed a preliminary strengthening solution.

Are these strengthening limits for gravity loads only? What about for a seismic load combination?

Yes, the strengthening limits are just for gravity loading. Seismic loading does not require an existing capacity check as it is highly unlikely for the FRP to be damaged during a lateral event.

Did Simpson Strong-Tie perform load tests on FRP repaired timber piles?

We are currently testing our FRP products as applied to timber piles at West Virginia University. We have also implemented a full-scale testing program on damaged timber piles at our own lab using our FX-70® fiberglass jacket system.

Will any of your seminars cover FRP and CMU? Seismic applications?

Yes, these are topics we are considering for future webinars.

The 0.6 limit for compressive stress can be very limiting. Can this value be evaluated on a case-by-case basis? The Euro code allows higher limits on compressive stress?

Our designers will report this value, along with the section addressing this check from ACI 440.2R, to the EOR and discuss whether the EOR would like to proceed with the FRP strengthening on his or her project.

Which engineer (EOR or Delegated Engineer) is responsible for specifying the scope of special inspections?

We provide a draft FRP specification to the EOR to use in their final determination of the special inspection requirements for a project. It’s in the owner’s best interest to hire a qualified special inspection agency on an FRP installation project.

For complete information regarding specific products suitable to your unique situation or condition, please visit strongtie.com/css or call your local Simpson Strong-Tie RPS specialist at (800) 999-5099.

Introducing Fabric-Reinforced Cementitious Matrix (FRCM)

February 14 marks the third interactive webinar in the Simpson Strong-Tie Composite Strengthening Systems™ Best Practices Series: “Introducing Fabric-Reinforced Cementitious Matrix (FRCM).

Join Simpson Strong-Tie engineering manager Brad Erickson, S.E., P.E., and Simpson Strong-Tie senior product manager Mark Kennedy, PMP, for an informative discussion of this new product solution. Attendees will have the opportunity to ask questions during the live event.

Continuing education credits will be offered for this webinar.
Participants can earn one professional development hour (PDH) or 0.1 continuing education unit (CEU).


Why Fire-Rated Hangers Are Required in Type III Wood-Frame Buildings

One of the first mixed-use designs I worked on as a consulting structural engineer was a four-story wood-frame building over two levels of parking. Designing the main lateral-force-resisting system with plywood shearwalls was a challenge for this project that required new details to meet the high design loads. The high overturning forces were resisted using the Simpson Strong-Tie® Strong-Rod™ anchor tiedown system, which incorporates high-strength rods, bearing plates and shrinkage compensation devices.

At the time, these construction details using Strong-Rod systems and high- load shearwall diaphragms were new, innovative concepts. However, this method of construction rapidly became commonplace as intense demand for housing fueled the trend toward denser, mixed-use developments in downtown areas. I discussed the trend toward taller, denser developments in this post.

A more recent trend in wood-frame construction has been the shift to Type III wood-frame construction, which allows designs up to five stories. To help educate designers on some of the nuances of Type III wood-frame construction and provide guidance on meeting the associated code requirements, we reached out to Bruce Lindsey, the South Atlantic Regional Director for WoodWorks. Bruce wrote a two-part article entitled Fire Protection Considerations with Five-Story Wood-Frame BuildingsPart 1 and Part 2. This post will go into more detail on connecting the floor system to the two-hour fire-rated exterior walls and discuss our new DG series joist hangers that are specially designed for this application.

As a structural engineer, I was aware of fire requirements mostly because I needed to account for the weight of fire sprinklers, added layers of gypsum board, fire-proofing on steel, or concrete slab thickness in my design. While the increased loads can affect the vertical- and lateral-force-resisting systems, I seldom needed to change the details and connections in my designs.

The exterior walls in Type III wood-frame construction require fire-retardant-treated (FRT) lumber with two layers of gypsum board to provide a two-hour fire rating. There are many established fire-rated floor and wall assemblies available. The challenge, as discussed in Part 2 of Mr. Lindsey’s post, is detailing the intersections between the floor and wall systems. Connecting the floor framing to the exterior walls in Type III construction requires careful detailing to transfer the vertical loads without compromising the two-hour fire rating of the wall assembly.

Below is a summary of some of the possible fire wall connections as discussed in Mr. Lindsey’s previous blog posts.

A solid header on top of the wall that has adequate thickness to provide a two-hour rating through its charring capability. The cost and availability of solid rim board material should be considered.

A continuous 2x ledger or blocking to provide one hour of fire resistance. The second hour of resistance is provided by ceiling gypsum board. Some jurisdictions object to this detail over concerns about a fire starting within the floor cavity.

Some jurisdictions interpret the two-hour exterior wall requirement as applying only to the wall and not the floor. In such jurisdictions, designers can sometimes use standard platform framing in Type III construction.

A variation where the ledger can be installed over two layers of gypsum board. Simpson Strong-Tie has tested and published values for ledger connections over gypsum board using our SDWH and SDWC fasteners. The testing of these fasteners was discussed in our Spanning the Gap post from earlier this year.

In this detail, one hour of fire resistance is provided by a single layer of gypsum board running the full height of the wall with a hanger installed over the gypsum board. The second hour of resistance is provided by the ceiling gypsum board.

A variation of this detail is our DU/DHU series of drywall hangers that are installed over two layers of gypsum board. These were addressed in this post.

Designs using hangers or ledgers installed over gypsum board can create construction sequencing challenges. Since the gypsum board needs to be installed before the framing, the contractor will need to coordinate between the trades.

A new solution that eliminates sequencing issues for Type III construction is our series of DG/DGH/DGB fire wall hangers, which are designed to easily install on a two-hour wood stud fire wall. These top-flange hangers feature enough space to allow two layers of 5/8″ gypsum wall board to be slipped into place after the framing is complete.

These new fire wall hangers were tested in accordance with ICC-ES AC13 and ASTM D7147, which I discussed in How We Test – Part I: Wood Connectors. These standards do not explicitly detail how to test a hanger installed on a wood stud wall, so we collaborated closely with ICC Evaluation Services to develop a test setup that meets the intent of the standards.

All three of our new fire wall hangers have been tested according to ASTM E814 and received F (flame) and T (temperature) ratings for use on either or both sides of the fire wall. These ratings verify that the DG/DGH/DGB hangers do not reduce the two-hour fire wall assembly rating.

Our testing and load tables address installation of 2×4 or 2×6 stud walls constructed of Douglas fir (DF), southern pine (SP), spruce-pine-fir (SPF) or hem-fir (HF) lumber.

DG Hanger

DGH Hanger

DGB Hanger

Drywall Notch Detail

If you are working on a Type III wood-frame construction project, check out our Fire Wall Solutions page, which has product profiles with links to further information about the new DG hanger series, as well as our DU/DHU series of drywall hangers and fire wall fastener solutions using Strong-Drive® SDWS Timber screws.