Q&A About Advanced FRP Strengthening Design Principles

Our thoughts go out to everyone affected by Hurricane Harvey and this disaster in Texas. To help with relief efforts we are donating $50,000 to the American Red Cross Disaster Relief Fund. Employees at our Houston warehouse are safe and the employees from our McKinney branch will be doing as much as they can to help with relief efforts.

This week’s post was written by Griff Shapack, PE. FRP Design Engineer at Simpson Strong-Tie.

On July 25, 2017, Simpson Strong-Tie hosted the second interactive webinar in the Simpson Strong-Tie FRP Best Practices Series, “Advanced FRP Design Principles,” in which Kevin Davenport, P.E. – one of our Field Engineering Managers – and I discussed the best practices for fiber-reinforced polymer (FRP) strengthening design. The webinar examines the latest industry standards, proper use of material properties, and key governing limits when designing with FRP and discusses the assistance and support Simpson Strong-Tie Engineering Services offers from initial project assessment to installation. Watch the on-demand webinar and earn PDH and CEU credits here.

During the live webinar, we had the pleasure of taking questions from attendees during the Q&A session. Here is a curated selection of Q&A from that session:

While I see how you improve the flexural capacity of a beam, how do you increase its shear capacity to match new moment strength?

ACI 440.2R recommends checking the element for shear if FRP is used to increase flexural strength. U-wraps can be used to provide shear strengthening of a beam.

Are there any “pre-check” serviceability checks (deflection, vibration, etc.) similar to the ACI 440 strength check that you recommend when considering the use of FRP?

ACI 440.2R contains a few serviceability checks on the concrete, rebar and FRP that can be performed once you have designed a preliminary strengthening solution.

Are these strengthening limits for gravity loads only? What about for a seismic load combination?

Yes, the strengthening limits are just for gravity loading. Seismic loading does not require an existing capacity check as it is highly unlikely for the FRP to be damaged during a lateral event.

Did Simpson Strong-Tie perform load tests on FRP repaired timber piles?

We are currently testing our FRP products as applied to timber piles at West Virginia University. We have also implemented a full-scale testing program on damaged timber piles at our own lab using our FX-70® fiberglass jacket system.

Will any of your seminars cover FRP and CMU? Seismic applications?

Yes, these are topics we are considering for future webinars.

The 0.6 limit for compressive stress can be very limiting. Can this value be evaluated on a case-by-case basis? The Euro code allows higher limits on compressive stress?

Our designers will report this value, along with the section addressing this check from ACI 440.2R, to the EOR and discuss whether the EOR would like to proceed with the FRP strengthening on his or her project.

Which engineer (EOR or Delegated Engineer) is responsible for specifying the scope of special inspections?

We provide a draft FRP specification to the EOR to use in their final determination of the special inspection requirements for a project. It’s in the owner’s best interest to hire a qualified special inspection agency on an FRP installation project.

For complete information regarding specific products suitable to your unique situation or condition, please visit strongtie.com/css or call your local Simpson Strong-Tie RPS specialist at (800) 999-5099.

Advanced FRP Design Principles

In this free webinar we will dive into some very important considerations including the latest industry standards, material properties and key governing limits when designing with FRP.


Why Fire-Rated Hangers Are Required in Type III Wood-Frame Buildings

One of the first mixed-use designs I worked on as a consulting structural engineer was a four-story wood-frame building over two levels of parking. Designing the main lateral-force-resisting system with plywood shearwalls was a challenge for this project that required new details to meet the high design loads. The high overturning forces were resisted using the Simpson Strong-Tie® Strong-Rod™ anchor tiedown system, which incorporates high-strength rods, bearing plates and shrinkage compensation devices.

At the time, these construction details using Strong-Rod systems and high- load shearwall diaphragms were new, innovative concepts. However, this method of construction rapidly became commonplace as intense demand for housing fueled the trend toward denser, mixed-use developments in downtown areas. I discussed the trend toward taller, denser developments in this post.

A more recent trend in wood-frame construction has been the shift to Type III wood-frame construction, which allows designs up to five stories. To help educate designers on some of the nuances of Type III wood-frame construction and provide guidance on meeting the associated code requirements, we reached out to Bruce Lindsey, the South Atlantic Regional Director for WoodWorks. Bruce wrote a two-part article entitled Fire Protection Considerations with Five-Story Wood-Frame BuildingsPart 1 and Part 2. This post will go into more detail on connecting the floor system to the two-hour fire-rated exterior walls and discuss our new DG series joist hangers that are specially designed for this application.

As a structural engineer, I was aware of fire requirements mostly because I needed to account for the weight of fire sprinklers, added layers of gypsum board, fire-proofing on steel, or concrete slab thickness in my design. While the increased loads can affect the vertical- and lateral-force-resisting systems, I seldom needed to change the details and connections in my designs.

The exterior walls in Type III wood-frame construction require fire-retardant-treated (FRT) lumber with two layers of gypsum board to provide a two-hour fire rating. There are many established fire-rated floor and wall assemblies available. The challenge, as discussed in Part 2 of Mr. Lindsey’s post, is detailing the intersections between the floor and wall systems. Connecting the floor framing to the exterior walls in Type III construction requires careful detailing to transfer the vertical loads without compromising the two-hour fire rating of the wall assembly.

Below is a summary of some of the possible fire wall connections as discussed in Mr. Lindsey’s previous blog posts.

A solid header on top of the wall that has adequate thickness to provide a two-hour rating through its charring capability. The cost and availability of solid rim board material should be considered.

A continuous 2x ledger or blocking to provide one hour of fire resistance. The second hour of resistance is provided by ceiling gypsum board. Some jurisdictions object to this detail over concerns about a fire starting within the floor cavity.

Some jurisdictions interpret the two-hour exterior wall requirement as applying only to the wall and not the floor. In such jurisdictions, designers can sometimes use standard platform framing in Type III construction.

A variation where the ledger can be installed over two layers of gypsum board. Simpson Strong-Tie has tested and published values for ledger connections over gypsum board using our SDWH and SDWC fasteners. The testing of these fasteners was discussed in our Spanning the Gap post from earlier this year.

In this detail, one hour of fire resistance is provided by a single layer of gypsum board running the full height of the wall with a hanger installed over the gypsum board. The second hour of resistance is provided by the ceiling gypsum board.

A variation of this detail is our DU/DHU series of drywall hangers that are installed over two layers of gypsum board. These were addressed in this post.

Designs using hangers or ledgers installed over gypsum board can create construction sequencing challenges. Since the gypsum board needs to be installed before the framing, the contractor will need to coordinate between the trades.

A new solution that eliminates sequencing issues for Type III construction is our series of DG/DGH/DGB fire wall hangers, which are designed to easily install on a two-hour wood stud fire wall. These top-flange hangers feature enough space to allow two layers of 5/8″ gypsum wall board to be slipped into place after the framing is complete.

These new fire wall hangers were tested in accordance with ICC-ES AC13 and ASTM D7147, which I discussed in How We Test – Part I: Wood Connectors. These standards do not explicitly detail how to test a hanger installed on a wood stud wall, so we collaborated closely with ICC Evaluation Services to develop a test setup that meets the intent of the standards.

All three of our new fire wall hangers have been tested according to ASTM E814 and received F (flame) and T (temperature) ratings for use on either or both sides of the fire wall. These ratings verify that the DG/DGH/DGB hangers do not reduce the two-hour fire wall assembly rating.

Our testing and load tables address installation of 2×4 or 2×6 stud walls constructed of Douglas fir (DF), southern pine (SP), spruce-pine-fir (SPF) or hem-fir (HF) lumber.

DG Hanger

DGH Hanger

DGB Hanger

Drywall Notch Detail

If you are working on a Type III wood-frame construction project, check out our Fire Wall Solutions page, which has product profiles with links to further information about the new DG hanger series, as well as our DU/DHU series of drywall hangers and fire wall fastener solutions using Strong-Drive® SDWS Timber screws.

Meet the First Simpson Strong-Tie Engineering Excellence Fellow with Build Change

Introducing James P. Mwangi, Ph.D., P.E., S.E. – our first annual Simpson Strong-Tie Engineering Excellence Fellow with Build Change. James Mwangi will write a quarterly blog about his experience throughout the Fellowship.

I’m delighted to have been asked to contribute this post and feel honored to be the first-ever Simpson Strong-Tie Engineering Excellence Fellow with Build Change. It’s my hope that this post will inform you about my professional background, why I applied to the Fellowship and how I think the Fellowship can benefit people and the structures they live, work and go to school in.

I grew up in Kenya and went through my basic education and my undergraduate coursework in civil engineering there. I worked for the government of Kenya as a junior roads engineer before proceeding to Nigeria for my masters in structural engineering. I returned to Kenya and worked for the government as a junior structural engineer. I joined the faculty of civil engineering shortly after that as a lecturer.

Central Kenya – including Nairobi, where I lived – is subject to moderate seismic activity, and I felt several earth tremors growing up. This puzzled me from a very young age, and I always wanted to learn how buildings behaved during these events. Since I didn’t acquire this understanding during my undergraduate or my master’s studies, I headed to California in 1988 for doctoral work in structural engineering at UC Davis. I didn’t have to wait long for first-hand experience of the effects of major seismic activity, because the Loma Prieta earthquake happened hardly a year after my arrival. This earthquake helped shape my career by giving me the opportunity to visit the destruction sites in the San Francisco Bay Area. Through my professors at Davis, I led a very successful Caltrans-funded project on full-scale testing of repair methods (steel jacketing and epoxy injection) of pile extensions that we harvested from a bridge that collapsed along Highway 1 in Watsonville. From completing my doctoral studies at UC Davis, I joined Buehler and Buehler Structural Engineers (B&B) in Sacramento. The 1994 Northridge earthquake happened while my steel moment frame school building in Milpitas was undergoing review by DSA. When we realized that no DSA engineer would sign off on this system from the field observation of the behavior of steel moment frames, I had to redesign the building over a weekend with a steel-braced frame system to meet the client’s schedule. At B&B, I was able to design building structures of wood, steel, masonry and concrete ranging in use from public schools, hospitals, and other essential service facilities to commercial buildings.

Since 2003, I have been a university professor, having joined the Architectural Engineering department (ARCE) at Cal Poly, San Luis Obispo, where I teach both undergraduate and graduate design courses in timber, masonry, steel and concrete. As a certified disaster safety worker in the governor’s office of emergency services, I have participated in the Structural Assessment Program in Paso Robles following the 2003 San Simeon earthquake; in Port-au-Prince following the Haiti earthquake of 2010; in Napa following the Napa earthquake of 2014; and in Kathmandu following the Nepal earthquake of 2015. I have contributed my experience from these deployments to the profession by serving in the technical activities committee of The Masonry Society (TMS) and also representing the seven western states in the TMS Board of Directors.

After my two-week building assessment in Haiti in 2010, I returned to Haiti for a year with the Mennonite Central Committee (MCC), participating in capacity building and safe building-back-better workshops targeting homeowners, contractors, engineers, architects and government officials. It was during this time that I first met Build Change as we shared information on our projects in Haiti. Since then, I’ve led a group of ARCE students to Haiti and Nepal every summer, and we have made it part of our itinerary to visit Build Change projects in each of the countries.

As a structural engineer, I have used Simpson Strong-Tie (SST) products throughout my career here in the US. I’ve not only used the SST products to teach my timber and masonry design courses at Cal Poly but have also supervised ARCE senior projects where we have used SST products. One of these projects led to a naming of one of our design laboratory rooms as The Simpson Strong-Tie Laboratory. It was only natural, then, that when I saw the advertisement for the Simpson Strong-Tie Engineering Excellence Fellowship, I couldn’t believe that two organizations with whom I have worked so closely as an individual and as a teacher were teaming up to create such a great opportunity. My familiarity with the two organizations, along with the fact that I already had a sabbatical leave approved from Cal Poly for the year of the Fellowship, made it a must for me to apply for the Fellowship. Natural disasters only cause human devastation where naturally occurring events (earthquakes, hurricanes, etc.) are not mitigated. The missions of the two organizations – BUILD Disaster-Resistant Buildings and CHANGE Construction Practice Permanently, alongside Simpson Strong-Tie’s No-Equal commitment to creating structural products that help people build safer, stronger homes and buildings –added to my desire to apply for the Fellowship.

Build Change projects involve helping local governments provide safe school buildings and other structures so their communities can better withstand damaging natural events, whether hurricanes, tornadoes or earthquakes. Where possible, we’ll use Simpson Strong-Tie products for the repair or retrofit of roofs, walls and anchorage. Build Change currently has projects in Indonesia, the Philippines, Nepal, Haiti and Colombia, all of which are located in areas susceptible to high winds and earthquakes. Indonesia is the fourth most populous country in the world. It’s my hope that I’ll be able to participate in projects in each of these countries, and I certainly believe that Build Change and Simpson Strong-Tie together can help millions of people live in better structures, built from better local, sustainable materials, which will be safe from strong winds and earthquakes.

If you’d like more information about the fellowship or my involvement over the next year, I can be reached at james@buildchange.org.

Top 10 Changes to Structural Requirements in the 2018 IBC

This blog post will continue our series on the final results of the 2016 ICC Group B Code Change Hearings, and will focus on 10 major approved changes, of a structural nature, to the International Building Code (IBC).

  1. Adoption of ASCE 7-16
    • The IBC wind speed maps and seismic design maps have been updated.
    • A new section has been added to Chapter 16 to address tsunami loads.
    • Table 1607.1 has been revised to change the deck and balcony Live Loads to 1.5 times that of the occupancy served.
  2. New and Updated Reference Standards
    • 2015 IBC Standard ACI 530/ASCE 5/TMS 402-13 will be TMS402-16.
    • ACI 530.1/ASCE 6/TMS 602-13 will be TMS 602-16.
    • AISC 341-10 and 360-10 have both been updated to 2016 editions.
    • AISI S100-12 was updated to the 2016 edition.
    • AISI S220-11 and S230-07 were updated to the 2015 edition.
    • AISI S200, S210, S211, S212 and S214 have been combined into a new single standard, AISI S240-15.
    • AISI S213 was split into the new S240 and AISI S400-15.
    • ASCE 41-13 was updated to the 2017 edition.
    • The ICC 300 and ICC 400 were both updated from 2012 editions to 2017 editions.
    • ANSI/NC1.0-10 and ANSI/RD1.0-10 were all updated to 2017 editions.
  3. Section 1607.14.2 Added for Structural Stability of Fire Walls
    • This new section takes the 5 psf from NFPA 221, so designers will have consistent guidance on how to design fire walls for stability without having to buy another standard.
  4. Modifications of the IBC Special Inspections Approved
    • Section 1704.2.5 on special inspection of fabricated items has been clarified and streamlined.
    • The Exception to 1705.1.1 on special inspection of wood shear walls, shear panels and diaphragms was clarified to say that special inspections are not required when the specified spacing of fasteners at panel edges is more than 4 inches on center.
    • The special inspection requirements for structural steel seismic force-resisting systems and structural steel elements in seismic force-resisting systems were clarified by adding exceptions so that systems or elements not designed in accordance with AISC 341 would not have to be inspected using the requirements of that standard.
  5. Changes Pertaining to Storm Shelters
    • A new Section 1604.11 states that “Loads and load combinations on storm shelters shall be determined in accordance with ICC 500.”
    • An exception was added stating that when a storm shelter is added to a building, “the risk category for the normal occupancy of the building shall apply unless the storm shelter is a designated emergency shelter in accordance with Table 1604.5.”
    • Further clarification in Table 1604.5 states that the type of shelters designated as risk category IV are “Designated emergency shelters including earthquake or community storm shelters for use during and immediately after an event.”
  6. Changes to the IBC Conventional Construction Requirements in Chapter 23
    • The section on anchorage of foundation plates and sills to concrete or masonry foundations reorganized the requirements by Seismic Design Category (SDC) and added a new section on anchoring in SDC E. It also states that the anchor bolt must be in the middle third of the width of the plate and adds language to the sections on higher SDCs saying that if alternate anchor straps are used, they need to be spaced to provide equivalent anchorage to the specified 1/2″- or 5/8″-diameter bolts.
    • The second change permits single-member 2-by headers, to allow more space for insulation in a wall. 
  7. Modification to the Requirements for Nails and Staples in the IBC
    • ASTM F1667 Supplement One was adopted that specifies the method for testing nails for bending-yield strength and identifies a required minimum average bending moment for staples used for framing and sheathing connections.
    • Stainless-steel nails are required to meet ASTM F1667 and use Type 302, 304, 305 or 316 stainless steel, as necessary to achieve the corrosion resistance assumed in the code.
    • Staples used with preservative-treated wood or fire-retardant-treated wood are required to be stainless steel.
    • The new RSRS-01 nail was incorporated into TABLE 2304.10.1, the Fastening Schedule. The RSRS nail is a new roof sheathing ring shank nail designed to achieve higher withdrawal resistances, in order to meet the new higher component and cladding uplift forces of ASCE 7-16.
  8. Truss-Related Code Change
    • The information required on the truss design drawings was changed from “Metal connector plate type” to “Joint connection type” in recognition that not all trusses use metal connector plates.
  9. Code Change to Section 2304.12.2.2
    • A code change clarifies in which cases posts or columns will not be required to consist of naturally durable or preservative-treated wood. This change makes the requirements closer to the earlier ones, while maintaining consistency with the subsequent section on supporting members.
    • If a post or column is not naturally durable or preservative-treated, it will have to be supported by concrete piers or metal pedestals projecting at least 1″ above the slab or deck, such as Simpson Strong-Tie post bases that have a one-inch standoff.
  10. Code Change to IBC Appendix M
    • A code change from FEMA makes IBC Appendix M specific to refuge structures for vertical evacuation from tsunami, and the tsunami hazard mapping and structural design guidelines of ASCE 7-16 would be used rather than those in FEMA P-646.

Once the 2018 IBC is published in the fall, interested parties will have only a few months to develop code changes that will result in the 2021 I-Codes. Similar to this last cycle, code changes will be divided into two groups, Group A and Group B, and Group A code changes are due January 8, 2018. The schedule for the next cycle is already posted here.

What changes would you like to see for the 2021 codes?

The New Way to Connect with Strong Frame®

The April SE blog article, What Makes Strong Frame® Special Moment Frames So Special, explained the features and benefits of the Yield-Link® structural fuse design for the Strong Frame® special moment frame (SMF) connection. In this blog, I will be introducing the Yield-Link end-plate link (EPL) to the Strong Frame connection family.

What is the EPL?
The EPL connection (Figure 1) is the latest addition to the Strong Frame Strong Moment Frame (SMF) solution. The new EPL connection can accommodate a W8X beam which is approximately a 33% reduction in beam depth from a W12X beam. The frame is field bolted without the need for field welding which means a faster installation. The snug-tight bolt installation requirement means no special tools are required. The EPL SMF connection has the same benefit of not requiring any additional beam bracing as the T-Stub connection. The frame can be repaired after a large earthquake by replacing the Yield-Link connection. Since the shear tab bolts will be factory installed, installation time for the frame is reduced by 25% making the EPL connection one of the most straightforward connections to assemble.

Figure 1: New Yield-Link EPL connection

Why Did We Develop the EPL?
The development of the EPL came from strong interest and numerous requests to offer a solution with more head room for clearance of retrofit projects or enhancement for new construction using a shallower beam profile. The original T-stub link design has the shear tab welded to the column flange. The geometry of the shear tab meant that a W12X beam is required to accommodate the Yield-Link Flange. In Figure 2, you can see that a shallower beam profile will bring the Yield-Link flange closer to each other and limit the attachment of the shear tab. A new connection was needed.

Figure 2: Yield-Link flange interference with shear tab

Figure 3: 3 Bolt configuration with notched flange plate. (The 3rd bolt is on opposite side of beam.) The asymmetric layout produced uneven force distribution in the bolts.

How Did We Develop the EPL?
Multiple configurations were studied, including a notched flange plate with 3 bolts (Figure 3) to avoid interference with the shear tab connection to the column. In the end, a compact end plate link combining the shear tab and Yield-Link stem in a single connection was the final design. However, many questions loomed over the prototype. How will the single end plate design perform in a full scale test? Will the new configuration change the limit state? These questions needed to be studied prior to launching an expensive full-scale test program with multiple samples and configurations. Numerous Finite Element Analysis (FEA) models were studied and refined prior to full scale testing of a prototype. Modeling included ensuring the stem performs as a fuse (Figure 4) as discussed in the April blog and the integrity of the shear tab is maintained in the compact design. Figure 5 shows a graph comparing the analytical model to the actual full scale test. The full scale test with a complete beam and column assembly was performed to the requirements under AISC 341 Section K. The full scale test passed the requirements for the SMF classification as can be seen in Figure 6 for the specimen with 6-inch columns and 9-inch beam.

Figure 4: Equivalent Plastic Strain Plot of Yielding-Link Stem

Figure 5: Full Scale Test vs. Analytical model

Figure 6: Moment at Face of Column vs. Story Drift

Where Can I Get More Information?
The EPL is now recognized in the ICC-ES ESR-2802 code report as an SMF. EPL solutions are also offered in the Strong Frame Moment Frame Selector Software. Want to see how the new connection and member sizes can expand your design options? Visit www.strongtie.com to download the new Strong Frame Design Guide or contact your Simpson representative for more information.

Keep Your Roof On

He huffed, and he puffed, and he blew the roof sheathing off! That’s not the way kids’ tale goes, but the dangers high winds pose to roof sheathing are very real. Once the roof sheathing is gone, the structure is open and its contents are exposed to the elements and much more vulnerable to wind or water damage. It is a storyline that we meet all too often in the news.

About two years ago, the ASTM subcommittee on Driven and Other Fasteners (F16.05), addressed fastening for roof sheathing in high-wind areas by adding a special nail to ASTM F1667-17 – Standard Specification for Driven Fasteners: Nails, Spikes and Staples. The Roof Sheathing Ring-Shank Nail was added to the standard as Table 46. Figure 1 illustrates the nail and lists its geometrical specifications. This is a family of five ring-shank nails that can be made from carbon steel or stainless steel (300 series). Specific features of these nails are the ring pitch (number of rings per inch), the ring diameter over the shank, the length of deformed shank and the head diameter. Also, note B specifies that the nails shall comply with the supplementary requirement of Table S1.1, which tabulates bending yield strength. In this diameter class, the minimum bending yield strength allowed is 100 ksi.

Figure 1. Roof Sheathing Ring-Shank Nails (ASTM. 2017. Standard Specification for Driven Fasteners: Nails, Spikes and Staples, F1667-17. ASTM International, West Conshohocken, PA.)

The IBHS (Insurance Institute for Business and Home Safety) discusses roof deck fastening in its Builders Guide that describes the “FORTIFIED for Safer Living” structures. The IBHS FORTIFIED program offers solutions that reduce building vulnerability to severe thunderstorms, hurricanes and tornadoes. Keeping the roof sheathing on the structure is critical to maintaining a safe enclosure and minimizing damage, and roof sheathing ring-shank nails can be part of the solution. As Figure 2 from IBHS (2008) shows, every wood-frame structure has wind vulnerability.

Figure 2. Hurricane, high wind and tornado regions of the US (IBHS. 2008. Builders Guide, Fortified for Safer Living. Tampa, FL. 81 pp.)

More importantly for the wood-frame engineering community, the Roof Sheathing Ring-Shank Nails are being included in the next revision of the AWC National Design Specification for Wood Construction (NDS-2018), which is a reference document to both the International Building Code and the International Residential Code. You will be able to use the same NDS-2018, chapter 12 withdrawal equation to calculate the withdrawal resistance for Roof Sheathing Ring-Shank Nails and Post Frame Ring-Shank nails. The calculated withdrawal will be based on the length of deformed shank embedded in the framing member. Also, Designers need to consider the risk of nail head pull-through when fastening roof sheathing with ring-shank nails. If the pull-through for roof sheathing ring-shank nails is not published, you will be able to use the new pull-through equation in the NDS-2018 to estimate that resistance.
Simpson Strong-Tie has some stainless-steel products that meet the requirements for Roof Sheathing Ring-Shank Nails. These will be especially important to those in coastal high-wind areas. Table 1 shows some of the Simpson Strong-Tie nails that can be used as roof sheathing ring-shank nails. These nails meet the geometry and bending yield strength requirements given in ASTM F1667. See the Fastening Systems catalog C-F-2017 for nails in Type 316 stainless steel that also comply with the standard.

Table 1. Simpson Strong-Tie collated nails made from Type 304 stainless steel that comply with F1667-17 specifications for Roof Sheathing Ring-Shank Nails.

Improve your disaster resilience and withstand extreme winds by fastening the sheathing with roof sheathing ring-shank nails. You can find Roof Sheathing Ring-Shank nails in ASTM F1667, Table 46, and you will see them in the AWC NDS-2018, which will be available at the end of the year. Let us know your preferred fastening practices for roof sheathing.

What’s New in the ACI 440.2R-17?

The wait is over. The ACI 440.2R-17 Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures is now available. The following post will highlight some of the major changes represented by this version of the document.

It’s been a long road and countless committee hours to get from the last version of ACI 440.2R-08 to this document. While there are multiple smaller changes throughout the document, the most notable update is the addition of Chapter 13 – Seismic Strengthening.

 

The new seismic chapter addresses the following FRP strengthening scenarios:

  • Section 13.3 – Confinement with FRP
    • This section includes all of the following: general considerations; plastic hinge region confinement; lap splice clamping; preventative buckling of flexural steel bars.
  • Section 13.4 – Flexural Strengthening
    • The flexural capacity of reinforced concrete beams and columns in expected plastic hinge regions can be enhanced using FRP only in cases where strengthening will transfer inelastic deformations from the strengthened region to other locations in the member or the structure that are able to handle the ensuing ductility demands.
  • Section 13.5 – Shear Strengthening
    • To enhance the seismic behavior of concrete members, FRP can be used to prevent brittle failures and promote the development of plastic hinges.
  • Section 13.6 – Beam-Column Joints
    • This section covers a great deal of recent research on the design and reinforcement of beam-column joints.
  • Section 13.7 – Strengthening Reinforced Concrete Shear Walls
    • This section provides many recommendations for FRP strengthening of R/C shear walls.

Simpson Strong-Tie Can Help

We recognize that specifying Simpson Strong-Tie® Composite Strengthening Systems™ (CSS) is unlike choosing any other product we offer. Leverage our expertise to help with your FRP strengthening designs. Our experienced technical representatives and licensed professional engineers provide complimentary design services and support – serving as your partner throughout the entire project cycle.

For complete information regarding specific products suitable to your unique situation or condition, please visit strongtie.com/css or call your local Simpson Strong-Tie RPS Specialist at (800) 999-5099.

Upcoming Free Webinar: Advanced FRP Design Principles

Join us live on July 25 for the second interactive webinar in the Simpson Strong-Tie FRP Best Practices Series: Advanced FRP Design Principles. In this webinar we will highlight some very important considerations during the FRP design processes. This will include topics such as the latest industry standards, proper use of material properties, and key governing limits when designing with FRP. Attendees will also have an opportunity to pose questions to our engineering team during the event. Continuing educations units will be offered for attending this webinar. 

Advanced FRP Design Principles

In this free webinar we will dive into some very important considerations including the latest industry standards, material properties and key governing limits when designing with FRP.


Revisiting Stainless-Steel Nail Calculations . . . .

This week’s post was written by Bob Leichti, Manager of Engineering for Fastening Systems.

Those of you who have been following the Simpson Strong-Tie SE Blog for a while may recall our 2013 blog post on the withdrawal resistance of stainless-steel nails. There have been several developments relating to that subject since that blog was posted, and we want to help you catch up.

First, the National Design Specification for Wood Construction (NDS) was revised in 2015. In the 2015-NDS revision, a new chapter 10, Cross-Laminated Timber, was created, moving Dowel-Type Fasteners from Chapter 11 to Chapter 12. Every place in the original blog post where there is a snip of the NDS, you will find the same information in NDS-2015 Chapter 12. Did you know that you can download a free, view-only copy of the NDS from the American Wood Council at awc.org?

Second, after we published our blog post about stainless-steel nail withdrawal, a journal paper was published about withdrawal resistance of stainless-steel nails. This paper has all the nitty-gritty related to withdrawal resistance and bending yield strength for smooth-shank stainless-steel nails: Ramer, D.R. and Zelinka, S.L. (2015). “Withdrawal Strength and Bending Yield Strength of Stainless Steel Nails,” Journal of Structural Engineering, American Society of Civil Engineers, Vol. 141, no. 5, 7 pp. (DOI: 10:1061/ASCE)ST.1943-541X.0001088).

Third, the NDS has been through another revision cycle and will soon have a 2018 copyright date. The chapter on dowel-type fasteners has some significant revisions that we will discuss in a blog post when the NDS-2018 is published later this year. SPOILER ALERT: NDS-2018 has a new withdrawal function for smooth-shank stainless steel nails.

Stay tuned!

The Cold-Formed Steel Construction Catalog is HOT off the press!

The SE Blog is taking some time off for the 4th of July holiday this week. However, we’ve just released the 2017 edition of our Connectors for Cold-Formed Steel Construction catalog – order a hard copy to be mailed to your office or download a PDF copy and start using it today!

Connectors For Cold-Formed Steel Construction

The C-CF-2017 is a 308-page catalog including specifications, load tables and installation illustrations for our cold-formed steel connectors and clips, helping you easily specify and install in commercial curtain-wall, mid-rise and residential construction.


How Heat Treating Helps Concrete Anchoring Products Meet Tougher Load Demands

Joel Houck is a senior R&D engineer for Simpson Strong-Tie’s Infrastructure-Commercial-Industrial (ICI) group based out of the new West Chicago, IL location. He has spent the last 17 years with Simpson developing new mechanical anchors and adhesive anchor components, as well as developing a lot of the lab equipment required to test these products. This experience has given him extensive knowledge and insight into the concrete anchor industry, especially when it comes to the proper function and performance of anchors. Joel is a professionally licensed mechanical engineer in the state of Illinois.

There’s a saying in Chicago, “If you don’t like the weather, just wait fifteen minutes.” That’s especially true in the spring, when temperatures can easily vary by over 50° from one day to the next. As the temperature plunges into the blustery 30s one evening following a sunny high in the 80s, I throw my jacket on over my T-shirt, and I’m reminded that large swings in temperature tend to bring about changes in behavior as well. This isn’t true just with people, but with many materials as well, and it brings to mind a thermal process called heat treating. This is a process that is used on some concrete anchoring products in order to make them stronger and more durable. You may have heard of this process without fully understanding what it is or why it’s useful. In this post, I will try to scratch the surface of the topic with a very basic overview of how heat treating is used to improve the performance of concrete anchors.

According to the ASM Handbook: Heat Treating, heat treatment is a process of heating and cooling a solid metal or alloy in such a way as to obtain desired conditions or properties.1 In practical terms, metals (usually steel in the case of most concrete anchors) are heat treated in order to improve their properties in some way over their base condition. When steel wire is formed into the complex shapes of anchors during the manufacturing process, the steel needs to be soft and formable; however, it is often beneficial to the performance of the final anchor product to be much harder and stronger than the base steel from which it’s formed. That’s where heat treating comes into play. By heating and cooling soft steel in a controlled manner, changes are made to the crystal structure of the steel in order to improve mechanical properties such as hardness, toughness, strength or wear resistance. Although the steel undergoes very complex microstructural changes during the heat treatment process, the end result is fairly straightforward – the once soft steel becomes harder and stronger as dictated by the heat treating process. As concrete anchors become more and more complex in order to meet the needs of building codes and designers, heat treating is becoming a more common and necessary component of high-strength anchors.

Figure 1. Steel microstructures: (a) soft steel example; (b) heat treated steel example.2

Depending on the desired results, there are many different types of heat treating processes that can be considered. The type of heat treatment and the parameters that are used can be customized for the steel type and the specific anchor application. There are several different types of heat treatments that are typically used for anchors. Two of the most common types are through hardening (also called neutral hardening) and surface hardening (also called case hardening).

Figure 2. Fasteners entering a heat treating furnace.3

Through hardening changes the mechanical properties (hardness, strength, ductility, etc.) of the steel without affecting its chemical composition. In order to alter the microstructure of the steel, it is heated in a furnace to a very high temperature, and then rapidly cooled, usually by submerging it in a liquid quench medium such as water or oil. This process will generally result in a very hard, but brittle material, so a secondary operation, called tempering, is employed after quenching. To temper steel, it is reheated to a lower temperature and then cooled in order to remove the stresses and brittleness created during the original quenching operation. Through hardening is useful where increased strength and toughness are required and surface wear isn’t a big concern, such as in our Crimp Drive® and split-drive anchors, setting tools for drop-in type anchors, high-strength all-thread-rod for adhesive anchors, and gas- or powder actuated fasteners. In order to effectively through harden an anchor, moderate levels of hardening elements must be present in the base steel, usually in the form of carbon. As the carbon content in the steel increases, so does the ability to harden it. The chemical composition of the steel along with the specific heat treating parameters will determine the level of hardness, strength and toughness of the final parts.

Surface hardening changes the hardness of the steel at the surface of the part by modifying the chemical composition of the steel at its surface only. This is done by altering the atmosphere in the heat treating furnace in order to get alloying elements, usually carbon, to diffuse into the surface of the steel. The increased carbon content increases the hardenability of the steel at the surface, but it can’t penetrate deeply into the steel, so a thin case forms around the surface of the steel with higher strength and hardness than the interior of the part. This creates parts that have high ductility throughout most of the interior, but that also have hard, wear-resistant surfaces. This type of heat treatment is useful in heavy-duty anchors where components of the anchors are sliding against each other during the setting process. It’s also useful in screw anchors, where the steel threads need to be very hard and wear resistant in order to cut into the concrete, but the ductility of the anchor must be maintained in order to avoid brittle failures in service. Just as with through hardening, there are many variations of surface hardening used in anchors, depending on the specific application.

Figure 3. Cross-section of surface hardened bar showing different hardness zones at the surface and in the interior.4

By using these two processes along with other heat treating processes, we are able to expand our ability to meet the higher demands placed on anchors in an industry that continues to evolve. As heat treating and steel chemistry continue to innovate, we will continue to use these developments to provide our customers with No-Equal concrete anchors that meet our high standard for performance and safety.

Mechanical Anchors

From complex infrastructure projects to do-it-yourself ventures, Simpson Strong-Tie offers a wide variety of anchoring products to meet virtually any need.


 

1 Lampman et al. (1997). ASM Handbook: Heat Treating. Materials Park, OH: ASM International.

2 “Microstructure of the AISI 4340 Steel.” Digital Image. Research Gate, n.d. Web. 14 June 2017 https://www.researchgate.net.

3 “Heat Treat Furnace.” Digital Image. ThomasNet Web Solutions, n.d. 14 June 2017 http://www.morganohare.com/heat-treating.html.

4 “Macrographs Showing Case Depth of Steels.” Digital Image. Science and Education Publishing Co. Ltd, n.d. 14 June 2017 http://pubs.sciepub.com.