Habitat for Humanity Introduces Habitat Strong Program

You’re probably already familiar with Habitat for Humanity, a nonprofit builder of simple, decent and affordable homes for low-income families around the world. According to builderonline.com, they were the 15th-largest builder in the country in 2015 when ranked by number of closings. Simpson Strong-Tie has been an official national partner with Habitat for Humanity since 2007, making contributions of cash and products exceeding $2.5 million in that time, and Simpson Strong-Tie employees have spent hundreds of hours building homes and training local Habitat affiliates.

Habitat for Humanity Home

We know from working on Habitat houses that they tend to be well built. There were newspaper articles about Habitat houses performing better than neighboring houses in Hurricane Andrew. In an effort to better benefit the homeowners they serve, Habitat has recently started a formal program to build even better, code-plus homes that could stand up to local hazards and document the methods used during construction. The name of this new program is Habitat Strong. Simpson Strong-Tie is proud to be a major sponsor of the program.

Habitat Strong actually began as a pilot project funded by Travelers Insurance that built 20 disaster-resistant homes in Alabama, Mississippi, New York and Connecticut. The success of that project convinced Habitat of the importance of building stronger, more resilient homes in all parts of the country. Starting from those regional hurricane-inspired efforts, the Habitat Strong program is now being used by more than 48 affiliates throughout the country, as shown on this map.

Habitat for Humanity Habitat Strong affiliate map.

According to Habitat for Humanity, “The Habitat Strong program is designed to promote the building of homes that are more durable, resilient, and physically stronger. The need for stronger homes has become increasingly apparent, and through Habitat Strong’s fortified codes-plus building practices, we are able to strengthen homes’ building envelopes, which enable[s] them to better withstand natural disasters in every region of the country. This program was developed specifically for the Habitat model to be affordable and volunteer-friendly, while offering benefits to partner families that will last for years to come. Based on these principles, we believe that building homes Habitat Strong is the right thing to do!”

Habitat for Humanity has established a set of construction standards for Habitat Strong that are based on the Insurance Institute for Business & Home Safety® (IBHS) FORTIFIED Home™ program. The FORTIFIED program is a scientifically developed, systems-based incremental approach for creating stronger, safer homes. There are three levels of FORTIFIED Home™ designations: Bronze, Silver and Gold. Each level builds upon measures at the preceding level to increase the disaster resistance of the home. You can take a look at the FORTIFIED Home standards on the IBHS website at www.disastersafety.org.

There are now three separate sets of FORTIFIED Home™ standards: Hurricane, High Wind & Hail, and High Wind. In general, the three levels consist of the following:

Bronze:

  • Strengthen roof deck fastening by using 8d ring-shank nails in a closer-than-normal nailing pattern.
  • Apply a secondary water barrier to the roof deck so there will still be protection from water damage even if the roof covering is blown off.
  • Install a roof covering that is rated for high winds and, if appropriate, hail forces.
  • Prune nearby trees to prevent damage to the home during a wind event.

Silver:

  • Complete all requirements for Bronze.
  • Brace gable ends over 4′ tall and ensure they are sheathed with a minimum thickness of wood structural panel.
  • Anchor wood frame chimneys to the roof structure.
  • Anchor attached structures, such as porches and carports, from the roof to the foundation.

Gold:

  • Complete all requirements for Silver.
  • Provide a continuous load path for wind forces from the roof to the foundation. In a normal 115-mph wind zone, the load path is to be designed for at least 140 mph.
  • Provide a garage door that is rated for high winds.

Habitat for Humanity is recommending to their affiliates that homes built in coastal areas be built to the IBHS Gold standard for hurricanes, and those built in inland areas be built at a minimum to the Bronze or Silver standards for high winds. The Habitat homes that meet the Bronze or Silver standards will be certified as Habitat Strong. Habitat homes that are built to the Gold standard will be certified as Habitat Strong+.

Simpson Strong-Tie is proud to be assisting Habitat for Humanity with Habitat Strong. In January, we hosted a training for Texas affiliates that was offered by Habitat and IBHS staff at our Houston training facility. We also donated connectors for a demonstration home at Michigan State University that we helped design.

If you would like more information on Habitat Strong, contact HabitatStrong@habitat.org. To learn how you can help Habitat for Humanity, visit www.habitat.org/getinv/volunteer.

Are you aware of any other programs for strengthening affordable housing? Let us know in the comments below.

 

 

 

What Factors Contribute To A “Resilient” Community?

The world has seen many increasingly catastrophic natural disasters in the past decade, including Hurricane Katrina (Category 3) striking New Orleans in 2005, 2010’s 7.0 magnitude Haiti and 8.8 magnitude Chili earthquakes, the 9.0 magnitude Japan earthquake along with the Christchurch earthquake (6.3 magnitude) in 2011, the tornado outbreak in 2011 which included an EF4 striking Tuscaloosa, AL and a multiple-vortex EF5 striking Joplin, MO. We also saw Category 2 Hurricane Sandy, the largest Atlantic hurricane on record in 2012 and the EF5 tornado striking Moore, Oklahoma in 2013.

New Orleans was approximately $2 billion ahead of Nashville in real gross domestic product in 2002, but suffered an $80 billion loss due to Hurricane Katrina. With economic factors such as business interruption, business loss and population loss, New Orleans fell significantly behind Nashville by approximately $105 billion in real gross domestic product from 2005 to 2012 as shown in Figure 1.

Economic growth chart for New Orleans versus Nashville

Figure 1: Economic repercussions: New Orleans vs. Nashville economic growth from 2002 to 2012 (Courtesy of Dr. Lucy Jones, USGS)

A June 2014 article in Engineering News-Record noted, “Economists predict it will take some $35 billion and 50 to 100 years for New Zealand to recover from the February 2011 Canterbury earthquake, which killed 185 people and devastated Christchurch, the nation’s third-largest .” (See Figure 2)

New Zealand earthquake soft story building collapse

Figure 2: 2011 New Zealand earthquake soft story building collapse (Courtesy of Dr. Andy Buchanan)

In 2008, the USGS forecasted a 99% probability that a 6.7 magnitude or greater earthquake would occur in California. An earthquake scenario was developed for the Southern California ShakeOut explaining the effects of a 7.8 magnitude earthquake on Southern California caused by a rupture of the southern portion of the San Andreas Fault. The scenario was developed by Dr. Lucy Jones of the USGS and a group of more than 300 scientists. It estimated approximately 1,800 deaths, 50,000 injuries and $213 billion of economic losses.

The economic losses included approximately $48 billion due to shaking damage, $65 billion due to fire damage, $96 billion due to business interruption costs and $4 billion due to traffic delays.

With this kind of devastation, building owners, building occupants, builders and designers are looking to better understand the performance expected from buildings built to minimum code requirements, and what the costs are of building to the minimum or above the minimum before and after a disaster.

After an earthquake, survivors often say they thought their building was built to code and wonder why it was so damaged or had to be demolished. Many don’t realize that building to the code minimum in earthquake country means there will be significant damage to the building and that it may need to be razed, as the cost to repair is too high. Christchurch is an example of this (see Figure 3).

2011 Christchurch CBD earthquake impact

Figure 3: 2011 Christchurch CBD earthquake impact (Courtesy of Dr. Ron Mayes, USRC)

Another consideration of the effects of a natural disaster is the interaction with the built environment. While it would seem that each building owner is responsible for the building(s) they own, their buildings’ performance in a natural disaster can adversely affect adjacent buildings, infrastructure and citizens, thereby greatly affecting the performance and recovery of neighbors and the community overall. Additionally, since natural resources are stressed and energy costs are increasing, most communities are making efforts to reduce their use with various sustainability or green initiatives. Buildings represent a significant amount of materials and energy. It’s been said that the most “green” building is the one already built versus one having to be re-built after a significant event.

These issues have led to discussion about the “resiliency” of a community. Webster’s Dictionary defines “resiliency” as “. . .able to become strong, healthy, or successful again after something bad happens” or “. . .able to return to an original shape after being pulled, stretched, pressed, bent, etc.

There are tools that consumers already use to understand the quality and risk associated with a product or service, such as consumer report ratings for various products from cars to appliances, car crash test ratings and the restaurant grading system. To offer a similar information tool for buildings, a new non-profit organization called the United States Resiliency Council (USRC) was formed. The goal of the USRC is to serve as a credible unbiased tool for local governments, building owners, lenders, insurance providers and occupants by providing information on the quality and risk associated with a building after a natural disaster. Simpson Strong-Tie is a Founding Member of the USRC along with 63 other companies and organizations such as ATC, EERI, NCSEA, SEAOC.

The USRC vision is “. . .a world in which building performance in disasters such as earthquakes, hurricanes, tornadoes, floods and blast are more widely understood” and its mission is “. . .to be the administrative vehicle for implementing rating systems for buildings subject to natural and manmade disasters, and to educate the building industry and the general public about these risks.” Keys to the consistency and credibility of their building rating system includes certifying engineers to perform ratings and requiring a technical audit of the ratings by certified reviewers.

The rating process begins with a building evaluation by a USRC certified engineer using the Tier 1 and 2 check list procedure of ASCE 41-13, “Seismic Evaluation of Existing Buildings,” which describes a three-tiered process for seismic evaluation of existing buildings to either the Life Safety or Immediate Occupancy Performance Level. Alternately, the certified engineer may use FEMA P-58, “Seismic Performance Assessment of Buildings,” which expresses analysis results in terms of deaths, dollars and down time. Then the certified engineer converts the findings from ASCE 41 or FEMA P-58 to a USRC rating. The USRC earthquake hazard rating system describes building performance using three dimensions: Safety, Repair Cost, and Time to Regain Basic Function. Within each dimension, there are five thresholds of performance, each represented by a star as shown in Figure 4.

USRC earthquake hazard building rating system of three dimensions with five thresholds of performance

Figure 4: USRC earthquake hazard building rating system of three dimensions with five thresholds of performance (Courtesy of USRC)

A three star rating means loss of life is unlikely, the building repair cost will likely be less than 20% and the time to regain basic function will likely be within weeks to months. Typical buildings built to the code minimum would likely receive a three star rating.

As discussed in a previous blog post, Los Angeles Mayor Garcetti formed a Seismic Safety Task Force led by Dr. Lucy Jones which developed the “Resilience by Design” report. The report contains recommended strategies to identify and seismically strengthen vulnerable existing buildings, water infrastructure and communication framework. It included a voluntary earthquake hazard building rating using the USRC system. Los Angeles plans to lead by example by having city-owned buildings rated to better understand the quality and needs of their building stock. Importantly, the report also offered incentive recommendations such as waiving permit fees and a five-year exemption from business tax for those businesses moving into retrofitted buildings to “. . .help ensure the successful implementation of the recommendations.”

The San Francisco Community Action Plan for Seismic Safety (CAPSS) Earthquake Safety Implementation Program (ESIP) listed 50 tasks to be implemented over 30 years including a Mandatory Soft-Story Retrofit Program. This program was signed into law in the spring of 2013 as we have covered in a previous blog post.

Other cities are looking into similar strengthening strategies as L.A. and S.F. Hopefully, individuals, building owners, occupants, financiers, insurance organizations, other organizations and government officials will work together to determine the vulnerabilities in their built environment and develop strategies to address them. This will better ensure that communities not only survive coming natural disasters, but also are able to recover more quickly.

What should be the measures of a resilient community? Which organizations or efforts are working to educate and improve your community resiliency? Let us know in the comments below.

 

Hurricane Sandy Rebuilding Strategy

I confess that I listen to a lot of pop music while driving to work, mostly because I forget to change the station after dropping the kids off. It can be slightly embarrassing if I drive with a coworker and I’m tuned into the “all Bieber, all day” station when I start the car.

On Monday, I was without kids and managed to hear several news stories on NPR about Hurricane Sandy. Transcript of one story is here and the NPR blog post about it is here.

The Hurricane Sandy Rebuilding Task Force released a report titled Hurricane Sandy Rebuilding Strategy. The report has 69 recommendations ranging from complex, such as setting minimum flood elevations that account for projected sea level rise, to relatively simple, such as states and localities adopting and enforcing the most current versions of the IBC® and IRC®.

The recommendations cover energy, infrastructure, sanitation, water, fuel supply, internet, transportation, and too many other things to list. But if I had to pick one word to summarize the report, it would be:

Resilience: The ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions.

Regardless of whether the natural disaster is high wind, earthquake, flood or fire, there has been a shift in public policy over the past decade to emphasize resilience. Resilience is a cycle. It begins with mitigation before the disaster. Some examples of mitigation that have appeared in this blog:

Seismic Retrofit of Unreinforced Masonry (URM) Buildings

Soft-Story Retrofits

Building a Storm Shelter to ICC-500 Design Requirements

Designing new buildings with specific performance targets is a form of mitigation as well. Resilience continues with response after the disaster, and then short and long-term recovery plans to reduce the time between disaster and recovery.

Have recent natural disasters such as Hurricane Sandy changed the way you are designing? Let us know by posting a comment.

– Paul