What You Should Know About the New DGH Fire Wall Hanger Options

Does everyone do year-end performance reviews to discuss how you did on your project objectives and professional development goals? I love meeting with my team to recap all their amazing accomplishments for the past year, discussing long-term career plans and figuring out the steps we will take to implement those plans over the next six months, year, and beyond. I hate, hate, hate, hate doing all the paperwork that HR requires – but I am done with it now, so I’ll get over it.

One of our new product objectives for 2017 was to create a new fire wall hanger that could be installed before the drywall. Creating a joist hanger that can span a gap while still meeting the target loads was a challenging task. We released the DG series of fire wall hangers in July. I discussed the use of fire wall hangers in Why Fire-Rated Hangers Are Required in Type III Wood-Frame Buildings.

Before we finished developing the DG series of hangers, we had already started design and testing for skewed and offset top-flange options. As much as engineers love buildings that look like rectangular boxes, the real world isn’t always square, and framing isn’t always perpendicular.

My colleague, Randy Shackelford, did a series of blog posts about how to specify a hanger, which covered joist hangers, truss hangers and custom hangers. Among the many issues Randy discussed, an important one for engineers is that customized hangers with skews or offset flanges have load reductions. Some reductions are small, and some can be large. One thing the reductions have in common is they are determined through testing.

Like other skewed or offset top-flange hangers, modified DGH hangers have load reductions due to differences in performance when compared to the standard versions. With many of our hanger options, we provide adjustment factors, which Randy covered in his posts mentioned above. Since there are only four loads for the skewed or offset DGH hangers, we tabulated and published the allowable loads in a new flier, F-C-DGHSKEW.

I am still adjusting goals for my team for 2018. Maybe we’ll see about proposing a building-code change to require buildings to be square. Until then, Simpson Strong-Tie will keep your hanger options open.

 

Paul McEntee

Author: Paul McEntee

A couple of years back we hosted a “Take your daughter or son to work day,” which was a great opportunity for our children to find out what their parents did. We had different activities for the kids to learn about careers and the importance of education in opening up career opportunities. People often ask me what I do for Simpson Strong-Tie and I sometimes laugh about how my son Ryan responded to a questionnaire he filled out that day:

Q.   What is your mom/dad's job?
A.   Goes and gets coffee and sits at his desk

Q.   What does your mom/dad actually do at work?
A.   Walks in the test lab and checks things

When I am not checking things in the lab or sitting at my desk drinking coffee, I manage Engineering Research and Development for Simpson Strong-Tie, focusing on new product development for connectors and lateral systems.

I graduated from the University of California at Berkeley and I am a licensed Civil and Structural Engineer in California. Prior to joining Simpson Strong-Tie, I worked for 10 years as a consulting structural engineer designing commercial, industrial, multi-family, mixed-use and retail projects. I was fortunate in those years to work at a great engineering firm that did a lot of everything. This allowed me to gain experience designing with wood, structural steel, concrete, concrete block and cold-formed steel as well as working on many seismic retrofits of historic unreinforced masonry buildings.