Q&A About MPBZ Moment Post Base

This week’s post was written by Jhalak Vasavada, Research & Development Engineer at Simpson Strong-Tie.

This past December, Simpson Strong-Tie hosted an interactive webinar in which product manager Emmet Mielbrecht and I discussed the development, testing, evaluation and applications of our new moment-resisting MPBZ moment post base. During the one-hour webinar, we explained the testing and evaluation criteria for new product development, test procedures, installation recommendations, allowable loads and the rotational stiffness of the connection. We also included a design example. In case you missed the discussion, you can watch the on-demand webinar and earn PDH and CEU credits here.

As part of the live webinar in December, Emmet and I led a lively Q&A session with the attendees. What follows is a curated selection of those questions and answers. Click here for more answers to participant questions. 

What is the most common ultimate failure mode?

It is concrete breakout.

How is wood shrinkage addressed?

We have evaluated wood shrinkage by testing, however, it is in review with ICC-ES. Additional information shall be made available upon approval from ICC-ES.

What was the actual strength of the concrete being used in the test (not the design value)?

It was 2500 psi, +/- 10 percent.

Breakout/pryout failure seems to govern allowable loads. Are there plans to test connection with adequate reinforcement to ignore breakout failure and achieve higher allowable moment loads?

Based on the overwhelming requests for higher loads we will be testing MPBX for:

  • Higher strength concrete
  • Reinforced concrete
  • Greater edge distances

Given overlap of steel, is one direction stronger than the other and Simpson uses the weak direction for tbl?

Yes, one direction is stronger than the other and the weak direction allowable loads are listed.

Technically, the stand-off tabs and side friction will also aid in the vertical load transfer, just extremely minimal.

Correct. Our tested loads are actually higher than the screw calculations. The code requires we use the lower of the two loads, so we use the SDS screws calculated capacity only.

Why is the 4×4 stiffer than 6×6?

The stiffness in the graphs is relative to the stiffness of the post. The 6×6 post is much stiffer, so the post base is less stiff as a percentage of the 6×6 post stiffness. The actual stiffness of the MPB66Z is stiffer than the MPB44Z.

Why a F1 value for wood? And you can use the higher wood values with a proper concrete design?

The F1 values listed in the allowable load tables are the lowest of concrete and wood assembly allowable loads.

Why aren’t uplift loads for the wood connection published?

The uplift loads are limited by the lesser of the wood or concrete capacity. We lumped those together under the concrete. This will be clarified in future publications.

Relative to deflection associated with rotation at the base is that considered elastic? In other words, when the load is removed will the deflection return to zero?

Yes. Deflection associated with rotation at the base due to applied loads within allowable load range is considered elastic.

Ready to learn more about MPBZ moment post base? See the rest of the Q&A questions here and you can watch the on-demand webinar and earn PDH and CEU credits here.

Watch a free MPBZ webinar.

Join Simpson Strong-Tie R&D engineer Jhalak Vasavada, P.E., and Simpson Strong-Tie product manager Emmet Mielbrecht for a lively and informative discussion of MPBZ.

AC398 Now Includes Moment Evaluation of Cast-in-Place Post Bases

This week’s post was written by Jhalak Vasavada, Research & Development Engineer at Simpson Strong-Tie.

When we launched our new, patent-pending MPBZ moment post base earlier this year, the evaluation of the moment capacity of post bases was not covered by AC398 – or by any other code, for that matter. There wasn’t a need – there were no code-accepted connectors available on the market for resisting moment loads.

We proposed adding moment evaluation to the AC398 and presented our research to the ICC-ES committee in June. After a thorough review, which included a public hearing, the provision was approved. Here are some details about the revisions to this acceptance criteria.

What is AC398?

AC398 is the Acceptance Criteria for cast-in-place cold-formed steel connectors in concrete for light-frame construction.

Acceptance criteria are developed to provide guidelines for demonstrating compliance with performance features of the codes referenced in the criteria. ICC-ES develops acceptance criteria for products and systems that are alternatives to what is specified in the code, or that fall under code provisions that are not sufficiently clear for the issuance of an evaluation report.

The criteria are developed through a transparent process involving public hearings of the ICC-ES Evaluation Committee (made up entirely of code officials), and/or online postings where public comments were solicited.

How is the moment load evaluated?

The MPBZ moment post base is a cast-in-place post base designed to resist uplift, download, lateral and moment forces. This blog post in February describes how it works, how it was tested and includes a design example. Since the MPBZ falls under the specialty inserts category of cast-in anchorage, it is not covered by the provisions of chapter 17 of ACI 318-14. Therefore, the MPBZ was evaluated based on AC398 for anchorage to concrete.

Our engineers worked closely with ICC-ES and the American Wood Council to develop evaluation criteria for moment. This revision to the criteria for moment evaluation and testing was posted for public comments on the ICC-ES website, and then presented by our engineers at the ICC-ES committee hearing last June. The presentation included the design, use, testing and load rating of the MPBZ. Following the hearing, and a thorough review, the committee approved the proposed revision to AC398.

What are the revisions to AC398?

With reference to moment evaluation, a few of the key changes to AC398 are:

  1. Moment Anchorage Strength: Similar to tension and shear anchorage strength, the available moment anchorage strength shall be determined using the equation

Where F = applied horizontal test force used to determine moment strength (lbf)

D = vertical distance from top of concrete member to the applied lateral test force F (ft.) (moment arm)

Other terms are as previously defined for tension and shear anchorage strength equations.

  1. Rotation: Testing of moment base connectors subject to an applied moment shall include measurement and reporting of the connector rotation as determined by the relative lateral displacement of gauges positioned 1″ and 5″ above the top of the connector.
  2. Side Bearing: Testing of moment base connectors that rely on bearing of the wood member against the side of the connector to resist moment loads shall address wood shrinkage.

Learn more about the MPBZ by watching our free webinar.

On December 6 we hosted an interactive webinar on the MPBZ moment post base, its evaluation, its testing and its applications. In this webinar, we discussed MPBZ moment post base product features, product development, design examples and much more. Attendees had an opportunity to ask questions during the event and you can find answers to those questions here.

Watch a free MPBZ webinar.

Join Simpson Strong-Tie R&D engineer Jhalak Vasavada, P.E., and Simpson Strong-Tie product manager Emmet Mielbrecht for a lively and informative discussion of MPBZ.

New Moment-Resisting Post Base

Jhakak Vasavada

Jhalak Vasavada is currently a Research & Development Engineer for Simpson Strong-Tie. She has a bachelor’s degree in civil engineering from Maharaja Sayajirao (M.S.) University of Baroda, Gujarat, India, and a master’s degree in structural engineering from Illinois Institute of Technology, Chicago, IL. After graduation, she worked for an environmental consulting firm called TriHydro Corporation and as a structural engineer with Sargent & Lundy, LLC, based in Chicago, IL. She worked on the design of power plant structures such as chimney foundations, boiler building and turbine building steel design and design of flue gas ductwork. She is a registered Professional Engineer in the State of Michigan.

At Simpson Strong-Tie, we strive to make an engineer’s life easier by developing products that help with design efficiency. Our products are designed and tested to the highest standards, and that gives structural engineers the confidence that they’re using the best product for their application.

Installed MPBZ

Figure 1: Installed MPBZ

Having worked in the design industry for almost a decade, I can attest that having a catalog where you can select a product that solves an engineer’s design dilemma can be a huge time- and money-saving tool. Design engineers are always trying to create efficient designs, although cost and schedule are always constraints. Moment connections can be very efficient — provided they are designed and detailed correctly. With that in mind, we developed a moment post base connector that can resist moment in addition to download, uplift and lateral loads. In this post, I would like to talk about moment-resisting/fixed connections for post bases and also talk about the product design process.

Figure 2. MPB44Z Graphic

Figure 2. MPB44Z Graphic

Lateral forces from wind and seismic loads on a structure are typically resisted by a lateral-force-resisting system. There are three main systems used for ordinary rectangular structures: (a) braced frames, (b) moment frames and (c) shearwalls. Moment frames resist lateral forces through bending in the frame members. Moment frames allow for open frames by eliminating the need for vertical bracing or knee bracing. Moment resistance or fixity at the column base is achieved by providing translational and rotational resistance. The new patent-pending Simpson Strong-Tie® MPBZ moment post base is specifically designed to provide moment resistance for columns and posts. An innovative overlapping sleeve design encapsulates the post, helping to resist rotation at its base.

The allowable loads we publish have what I call “triple backup.” This backup consists of Finite Element Analysis (FEA), code-compliant calculations and test data. Here are descriptions of what I mean by that.

Finite Element Analysis Confirmation

Once a preliminary design for the product is developed, FEA is performed to confirm that the product behaves as we expect it to in different load conditions. Several iterations are run to come up with the most efficient design.

Figure 3. FEA Output of Preliminary MPB Conceptual Design

Figure 3. FEA Output of Preliminary MPB Conceptual Design

Code-Compliance Calculations

Load calculations are prepared in accordance with the latest industry standards. The connector limit states are calculated for the wood-post-to-MPBZ connection and for MPBZ anchorage in concrete. Steel tensile strength is determined in accordance with ICC-ES AC398 and AISI S100-07. Wood connection strength is determined in accordance with ICC-ES AC398 and AC13. Fastener design is analyzed as per NDS. SDS screw values are analyzed using known allowable values per code report ESR-2236. The available moment capacity of the post base fastened to the wood member is calculated in accordance with the applicable bearing capacity of the post and lateral design strength of the fasteners per the NDS or ESR values. Concrete anchorage pull-out strength is determined in accordance with AC398.

Test Data Verification

The moment post base is tested for anchorage in both cracked and uncracked concrete in accordance with ICC-ES AC398.

Figure 4. Uplift Test Setup

Figure 4. Uplift Test Setup

The moment post base assembly is tested for connection strength in accordance with ICC-ES AC13.

Figure 5: Moment (induced by lateral load application) Test Set Up

Figure 5: Moment (induced by lateral load application) Test Set Up

The assembly (post and MPBZ) is tested for various loading conditions: download, uplift and lateral load in both orthographic directions and moment. Applicable factor(s) of safety are applied, and the controlling load for each load condition is published in the Simpson Strong-Tie Wood Construction Connectors Catalog.

Now let’s take a look at a sign post base design example to see how the MPBZ data can be used.

Design Example:

Figure 6: Sign Post Base Design Example

Figure 6: Sign Post Base Design Example

The MPB44Z is used to support a 9ʹ-tall 4×4 post with a 2ʹ x 2ʹ sign mounted at the top. The wind load acting on the surface of the sign is determined to be 100 lb. The MPB44Z is installed into concrete that is assumed to be cracked.

  • The design lateral load due to wind at the MPB44Z is 100 lb.
  • The design moment due to wind at the MPB44Z is (100 lb.) x (8 ft.) = 800 ft.-lb.
  • The Allowable Loads for the MPB44Z are:
    • Lateral (F1) = 1,280 lb.
    • Moment (M) = 985 ft.-lb.
  • Simultaneous Load Check:
    • 800/985 + 100/1,280 = 0.89. This is less than 1.0 and is therefore acceptable.


We are very excited about our new MPBZ! We hope that this product will get you excited about your next open-structure design. Let us know your thoughts by providing comments here.