Choosing Resiliency: Lessons from Hurricane Michael

In this post, Doug Allen, P.E., a structural engineer with Simpson Strong-Tie, looks at the choice homeowners in disaster-prone areas face between simply building to code and building to standards of resilience or IBHS FORTIFIED Home™ standards instead.

Resilience, or resiliency: The capacity to recover quickly from difficulties; toughness. The ability of a substance or object to spring back into shape; elasticity.

In the wake of the most recent and very devastating hurricane seasons, the theme of structural resiliency has resurfaced with renewed urgency for increasing numbers of homeowners, builders, Designers and civic planners. Hurricanes pose a triple threat of high winds, substantial rain and storm surge. Extreme weather has cost the nation nearly $100 billion in damage during 2018. Accordingly, awareness has risen within affected and surrounding coastal regions regarding their communities’ existing structural resilience ratings (low or high) and the need to improve in view of the losses as well as the time and cost to rebuild what was destroyed.
Continue Reading

Code Report: Understanding Allowable Load Changes

The Simpson Strong-Tie® 2019–2020 Wood Construction Connectors catalog is the first in the industry with updated connector allowable load tables to meet the new ASTM test standards required by the 2015 and 2018 International Building Code® (IBC®). It is designed to assist engineers, architects, Designers and contractors in selecting the right products for improved performance, efficiency and productivity. This blog post provides in-depth background about how we re-evaluated our connectors to meet the new standards.
Continue Reading

Upgrade Your Coiled Strap: How an Innovative Embossment Takes Utility Straps to the Next Level

CS16 coiled straps. I can’t tell you how many thousands (maybe more) I specified during my time as a consulting engineer. Straps are used everywhere. They were then, and are now, a go-to solution for drag and uplift loads. I didn’t have to look them up in the catalog — I knew the allowable loads by heart.

Then one day at a jobsite, I saw a contractor installing them and thought, “Wow, that is labor intensive. His arm must be so tired!” Suddenly, I felt a little guilty for all of the straps I had personally specified on my projects. I thought there must be a better way. Fast-forward 10 years, and today I’m an R&D engineer for Simpson Strong-Tie, an industry leader that prides itself on offering products that improve construction, keep costs down and allow for a safer built environment. As fate would have it, straps fall into my area of responsibility. Now, thinking about what could be done to improve a flat, steel strap is part of my job. Specifiers use straps load rated based on a National Design Specification® (NDS®) nail calculation and an American Iron and Steel Institute (AISI) steel calculation. How could Simpson Strong-Tie make that better?

Continue Reading

5 Ways the Quik Stik™ Tool Raises the Bar on Overhead Fastening

Our “Quik” line of tools now has jobsite efficiency covered from subfloor to drywall to rafters. The Quik Stik overhead assembly fastening system is our most recent innovation in a line of fastening systems that also includes the Quik Drive® PRO250G3 subfloor system and the Quik Drive PRODW drywall system. It provides contractors with a versatile solution that makes fastening rafter and truss connections faster and easier than ever. Here are five ways the Quik Stik raises the bar on overhead fastening.
Continue Reading

Introducing Excellence in Engineering Fellow: Juan Carlos Restrepo

We’re excited to introduce the recipient of the 2018–2019 Excellence in Engineering Fellowship: Juan Carlos Restrepo.

This is the second year of the fellowship, a successful partnership between Build Change, a Denver-based international nonprofit social enterprise, and Simpson Strong-Tie, a global leader in innovative structural solutions.
Continue Reading

Applying of ACI 318-14 Development Length Provisions to Post-installed Reinforcing Bars Secured to Concrete with Construction Adhesive

I first learned about the application of the ACI 318 development length provision to post-installed reinforcing bars back in 2003 when I read Post-Installed Adhesive-Bonded Splices in Bridge Decks, authored by Ronald A. Cook and Scott D. Beesheim. In their series of experiments, holes were drilled adjacent to cast-in-place bars using a carbide-tipped drill bit, and new bars were secured in these holes using an anchoring adhesive presumed to be of a type commonly used in concrete construction.
Continue Reading

Questions Answered: Making the Right Anchor Choice

In this post, we follow up on our August 28 webinar, Making the Right Anchor Choice: Best Practices in Anchor Design, by answering some of the interesting questions raised by attendees.

During the webinar where we discussed the critical performance factors and code requirements you need to consider when designing with or installing adhesive or mechanical anchors. In case you weren’t able to join our discussion, you can watch the on-demand webinar and earn PDH and CEU credits here.
Continue Reading

Keeping Up with Continuing Education (for Free!): Three New Online Courses to Check Out

In this post, Brittney Price, manager of content development for Product & Customer Training, discusses the training offered by Simpson Strong-Tie for customers’ professional development and continuing education credits. The training is offered in online courses and recorded webinars as well as live workshops around the country. The most recent offerings cover the topics of delegated design; code requirements for conventionally framed roofs; and deck inspections.
Continue Reading

Strong Partners SoCal Seismic Symposium with Dr. Lucy Jones and Karen Colonias

Have you ever stopped to think about how much time you spend in a building? You probably spend your day inside your home, school, or office and then stop by the coffee shop, grocery store, or mall. There is a statistic from the Environmental Protection Agency that estimates most people spend close to 90% of their lives inside a building. With all that time inside of a structure, how often do you stop and think about how safe that building is, especially if you live in an earthquake region? And what about the whole community of buildings, and how we would be able to continue living our lives if a big earthquake hit and we were able to survive . . . but had no buildings left that were safe to live or work in? This raises the question of how resilient we would be after an earthquake, how quickly we would be able to recover and resume normal lives after a catastrophic earthquake. For many cities around the world who have suffered through large earthquakes and hurricanes, the answer has been not very quickly at all, with some affected cities estimated as taking as long as 50–100 years truly to recover. We know a big earthquake is coming to Southern California, so what can we do? At Simpson Strong-Tie, we are helping lead the research and innovation to make sure buildings and communities can stay safe in the next earthquake.
Continue Reading