Welcome to the Structural Engineering Blog

Featured

Welcome to our Structural Engineering Blog! I’m Paul McEntee, Engineering R&D Manager at Simpson Strong-Tie. We’ll cover a variety of structural engineering topics here that I hope interest you and help with your projects and work. Social media is “uncharted territory” for a lot of us (me included!), but we here at Simpson Strong-Tie think this is a good way to connect and even start useful discussions among our peers in a way that’s easy to use and doesn’t take up too much of your time. Continue reading

How to Specify a Custom Hanger

As an engineer, it makes things easy when the buildings being designed are rectangular. This tends to make the connections occur between nice perpendicular members, and standard connectors and joist hangers can be used.

But buildings are not always rectangular and connections are not always between perpendicular members. Non-perpendicular members can have a skewed connection, where the supported member is moved side to side from perpendicular; or a sloped connection, where the supported member slopes up or down from a standard horizontal orientation; or a combination of the two.

To help with these situations, Simpson Strong-Tie offers a couple of options. The option chosen may depend on the timeframe in which the hanger is needed, the load demands on the hanger or the cost of the hanger.

If the demand load is low and an immediate solution is desired, Simpson Strong-Tie offers several adjustable hangers that can be skewed, sloped or both in the field.

LSU adjustable joist hanger

LSU adjustable joist hanger

A common adjustable joist hanger is the LSU/LSSU series, which can be sloped up or down and skewed right or left up to 45 degrees.

Remember that these hangers must be installed to the carried member prior to installation of the supported joist.

Other series of hangers are only adjustable for skew or slope.  For example, the THASR/L series is designed to accommodate connections skewed from 22½ to 75 degrees. Conversely, the new LRU ridge hanger is designed to support rafters at ridge beams with roof slopes of 0:12 to 14:12. Finally, the SUR/SUL/HSUR/HSUL series is not adjustable, but is manufactured with a skew of 45 degrees either right or left in several sizes.

THASL hanger

THASL hanger

LRU ridge connector

LRU ridge connector

HSUR hanger

HSUR hanger

If none of these pre-manufactured solutions fits your specific need, there are still options. This entails a custom-manufactured hanger. Many, but not all, joist hangers can be custom-made for specific slopes, skews, combinations of slopes and skews, and even alternate widths and alternate top flange configurations.

If this type of hanger is needed, a good place to start is the Hanger Options Matrix at the back of the Simpson Strong-Tie® Wood Construction Connectors Catalog. It is also available at strongtie.com.  An excerpt is shown below. This chart identifies which hangers can be modified, how they can be modified and to what extent they can be modified. There are two tables – one for top flange hangers and one for face mount hangers.

The Hanger Options Matrix is available in Simpson Strong-Tie(R) Wood Construction Connectors Catalog or at strongtie.com

The Hanger Options Matrix is available in Simpson Strong-Tie(R) Wood Construction Connectors Catalog or at strongtie.com

Once the user has found a hanger that can be modified to fit the actual situation, the next step is to calculate any load reductions, if applicable. The column at the far right gives the Wood Construction Connectors Catalog page number that lists any load reductions for the various options. If multiple options with reductions are specified, only the most restrictive load reduction needs to be applied, not all the reductions.

As an example, let’s say we need to hang a heavily loaded double LVL hip member from the end of an LVL ridge beam. We would look at a GLTV top flange hanger, skewed 45 degrees to the right, sloped down 45 degrees, with its top flange offset to the left. We see from the table above that all these options are permitted. If we go to page 220 (or strongtie.com), we can see what the load reductions would be for these options. The reductions are as follows:

  1. Sloped and skewed configuration for the GLTV has a maximum down load of 5,500 pounds.
  2. Offset top flange for the GLTV requires a reduction factor of 0.50 of the table roof load.
  3. BUT, skewed and offset top flange hangers have a maximum allowable load of 3,500 pounds.
  4. Offset top flange results in zero uplift load.

So the allowable load of our skewed, sloped, offset top flange GLTV would be 3,500 pounds downward and 0 pounds uplift. In this case, it was clear what the reduction was for our combination of modifications. If it is not listed specifically and you have multiple modifications with multiple reduction factors, use only the factor that results in the biggest reduction, not all of the listed reduction factors.

The next thing to do is to call out the desired hanger properly so that Simpson Strong-Tie can manufacture it to your needs. This is typically done by taking the regular product name, adding an X, and then calling out the modifications individually at the end.

For our hanger, assuming the hip is 3-1/2″ by 11-7/8″, the standard hanger would be a GLTV3.511, and the modified hanger would be called out as a GLTV3.511X, Skew R 45, Slope D 45, TF offset L.

There is one final consideration when hangers are both sloped and skewed. In this case, the top of the supported member (joist) will not be horizontal when it is cut, one side will be higher than the other. The user must decide and specify where he or she wants the upper side of the joist to fall. There are three options: high-side flush, center flush or low-side flush. We see that often users will want to specify high-side flush so that the joist ends up flush with the top of the supporting member, but that would be up to the user. This specification is added to the end of the callout name listed above. These cases are illustrated below.

A related matter occurs when the top flange of a hanger is sloped up or down. In this case the user also has to specify whether the joist is to be low-side flush, center flush, or high-side flush. But, in this case, the side is in reference to the top flange, not the joist. Specifying low-side flush will result in the top of the joist being flush with the lower side of the sloped top flange, not the low side of the joist.

If all of this seems confusing and somewhat difficult, it can be. Fortunately, Simpson Strong-Tie has developed a new web application – the Joist Hanger Selector – which automates this entire process. This app is located on strongtie.com/software.

Once you agree to the terms and conditions, choose the type of hanger you want to specify, then select the types of members being connected. This is what it would look like for our example.

jhs-input

 

This is where the user specifies any modifications required. Required loads can also be entered at this point. This is what it would look like for our example.

jhs-input2

Then, just click “CALCULATE” and the possible options will be shown. And here we see our GLTV3.511X, SK R 45, SL DN 45, TF Offset L, with a load of 3,500 pounds, just as we thought! I love it when a plan comes together.

jhs-input3

Hopefully, this web app will help you specify custom hangers with ease. Are there any other applications we could develop that would make specifying connectors easier? Let us know.

Upcoming events

The 22nd International Specialty Conference on Cold-Formed Steel Structures is coming up Nov. 5-6 at the Hilton Ballpark Hotel in St. Louis, MO. It is sponsored by the Wei-Wen Yu Center for Cold-Formed Steel Structures at the Missouri University of Science and Technology.

A biannual event, this conference brings together leading scientists, researchers, educators and engineers in the field of research and design of cold-formed steel structures to discuss recent research findings and design considerations. This year’s conference features 12 technical sessions covering a wide variety of topics. For more details, visit the conference website.

Code Reports for New Specialty Cast-In-Place Inserts

This week’s blog post was written by Ryan Vuletic, Manager of Engineering/R&D for Anchor Systems. Prior to joining Simpson Strong-Tie in 2001, he was a structural engineering consultant on projects such as state highways and bridges, Las Vegas hotels and casinos, Disney entertainment buildings and military facilities. Ryan received his B.S. in civil engineering from the University of California Irvine and MBA from the University of Southern California. He is a registered professional engineer in California.

Over the last decade, special types of cast-in-place inserts such as the Simpson Strong-Tie® Blue Banger Hanger® threaded insert have become very popular for anchoring suspended mechanical, electrical and plumbing equipment, piping and conduit.These types of anchors are quickly fastened to wood formwork, or through corrugated metal deck before concrete is poured.

Blue Banger Hanger® Metal Deck Insert (BBMD)

Blue Banger Hanger® Metal Deck Insert (BBMD)

Blue Banger Hanger® Wood Form Insert (BBWF)

Blue Banger Hanger® Wood Form Insert (BBWF)



Up until now, design engineers who wanted to specify these anchors had to address the question of code-compliance since these anchors are not specifically included within ACI 318 Appendix D or the International Building Code (IBC).

This issue has now been resolved through the code report process. On October 1, 2014, Simpson Strong-Tie received the first code report (ICC-ES ESR-3707) for this type of anchor under ICC-ES AC 446. The code report:

  • Covers all sizes of the Blue Banger Hanger Wood Form Inserts (BBWF) and Metal Deck Inserts (BBMD)
  • Addresses both cracked and uncracked normal-weight concrete and sand-lightweight concrete
  • Addresses static, wind and seismic loads

AC 446 (Acceptance Criteria for Headed Cast-In Specialty Inserts in Concrete) is a relatively new approval criteria that was developed by Simpson Strong-Tie and several other anchor manufacturers. It was adopted by ICC Evaluation Service in June 2013. Anchors that are approved under these criteria will utilize ACI 318 Appendix D and are deemed to conform to Sections 1908 and 1909 of the 2012 IBC.

Testing in accordance with AC446 establishes the strength of headed cast-in specialty inserts based on the strength design provisions of ACI 318. Although the shear testing requirements of this criteria are similar to those found in AC 193/ACI 355.2, the tension tests required are performed in a unique manner. The tension tests and the seismic tension tests are conducted in a steel jig.

The tests are conducted in this fashion to validate that the specialty insert has a strength that exceeds the calculated concrete breakout strength when f’c is set at 10,000 psi (maximum compressive strength permitted per ACI 318). The test program determines the following parameters for the specialty insert:

  • Nominal tension strength
  • Nominal seismic tension strength
  • Nominal steel shear strength
  • Nominal steel shear strength for seismic loading
  • Nominal steel shear strength in the soffit of concrete on metal deck
  • Nominal steel shear strength for seismic loading in the soffit of concrete on metal deck

This new qualification procedure and code report will give designers increased confidence that they can now properly design and specify the Simpson Strong-Tie Blue Banger Hanger and comply with the requirements of the 2012 IBC. What are your thoughts? Let us know in the comments below.

The Importance of Resilient Communities During Earthquakes

Imagine that it’s 4:30 a.m. and suddenly you’re awakened by strong shaking in your home. Half asleep, you hang on to your bed hoping that the shaking will stop soon. All of a sudden, the floor gives away and you fall. You think, “What just happened? How could this have possibly occurred? Am I alive?”

These could have been the thoughts of Southern California residents living in one of the many apartment buildings, which collapsed on January 17, 1994, during a 6.7 magnitude earthquake. The Northridge Earthquake brought awareness to buildings in our communities with a structural weakness known as a soft story, a condition that exists where a lower level of a multi-story structure has 20% or less strength than the floor above it. This condition is prevalent in buildings with tuck-under parking and is found in multistory structures throughout San Francisco, Los Angeles and other cities (see Figure 1). These structures are highly susceptible to major damage or collapse during a large seismic event (see Figure 2).

Soft Story building

Figure 1: Multi-unit wood-frame building with first weak story.

Aftermath of an earthquake

Figure 2: Collapsed soft story tuck under parking building. Image courtesy of LA Times

Soft story retrofits help to strengthen our communities and make them more resilient to major disasters. There are several resources available to structural engineers that need to retrofit weak-story buildings. Some of these resources are mentioned in our September 18 blog post.

During the 2014 SEAOC Convention held in Indian Wells on September 10-13, speakers discussed different methods, analysis and research that address the behavior of various materials and construction types during seismic events along with approaches to retrofit historically poor performing structures. This information can be viewed from the convention’s proceedings available at www.seaoc.org.

On October 20, 2014, the Structural Engineers Association of Southern California (SEAOSC) will be hosting their 4th annual Strengthening Our Cities BAR Summit in downtown Los Angeles. This event brings together many different stakeholders in our built environment, including public officials, building owners and managers, business owners, insurance industry representatives, emergency managers and first responders, and design professionals.

Many prestigious thought leaders, including USGS Seismologist Dr. Lucy Jones will be speaking at the summit, discussing such topics as tools and analysis methods for retrofitting vulnerable buildings and the Building Occupancy Resumption Program (BORP).

Expect a great day full of useful information about ways to strengthen our communities and prepare for major earthquakes as well as opportunities to network with like-minded peers. For additional information and to register, visit www.barsummit.org. We also hope you’ll visit our booth. We look forward to speaking with you there.

Remembering Loma Prieta

Steve Pryor

Structural engineer Steve Pryor in the Simpson Strong-Tie Tye Gilb lab.

Steve Pryor, S.E., has been with Simpson Strong-Tie for 17 years and currently serves as the International Director of Building Systems. Prior to joining the company, Mr. Pryor was a practicing structural engineer in California. While at Simpson Strong-Tie, he developed the Tyrell T. Gilb Research Laboratory, one of the world’s premier large-scale structural systems test facilities. The lab has the capability to simulate both wind and seismic effects on light-frame structures via both quasi static/cyclic and dynamic test machines that can apply vertical and lateral loading simultaneously. A recognized expert in the structural response, analysis and testing of light-frame buildings, Mr. Pryor participates on several state and national building code committees. He was the primary industry technical consultant for the highly successful NEESWood Capstone seismic testing in Miki, Japan, which tested a full-scale seven-story mixed-use steel/wood structure, the largest building ever tested on a shake table.

We all know that earthquakes physically shape the landscape here in California, but they shape careers as well.  Earthquakes I felt while growing up in California’s southern San Joaquin Valley got me thinking about engineering as a career while in high school. When the Loma Prieta earthquake struck on October 17, 1989, like many of you I was watching the World Series live on television and thus got to see the earthquake live as well. I was in my senior year of college at the time, studying Civil Engineering with a structural emphasis. This earthquake cemented the direction I would take in my career. I wanted to be a structural engineer, and I wanted to design buildings that would not fall down in earthquakes.

After Loma Prieta hit, I was relieved when I finally got through to my family and realized everyone was okay.  If an earthquake like that happened again today, I would get an alert on my cell phone and know within minutes exactly where it happened, how big it was, and how deep it was. I would also be able to look at the USGS ShakeMap online to get a feel of ground-level damage potential and locations. But in 1989, none of this information was available so over the course of the next few days along with the public, I learned about what had happened in the Bay Area.

After graduating in 1990, several great mentors guided me as I pursued the art of earthquake-resistant structural engineering. I began to realize that earthquakes are like a great predator of the built environment: occasionally they take down healthy buildings in their prime, but they particularly focus on the old and the weak amongst our building stock; buildings with known (and sometimes unknown) deficiencies that if improperly designed or left unretrofitted cause them to fall prey to the earthquake.   After several years of practicing structural engineering, and after obtaining my P.E. and S.E., it was with some irony that I came to work at Simpson Strong-Tie in 1997. I became part of a team of dedicated people working to provide structural solutions to new and existing buildings in an effort to keep them from falling prey to the next earthquake. I was now a Bay Area resident, living in the shadows of the same seismic hazards that had manifest themselves on October 17, 1989, and which had shaped my career choice.

While there were many different types of structural weakness on display as a result of the Loma Prieta earthquake, soft- or weak-story wood-frame structures commanded much of the attention. These multi-story wood light-frame structures have an inherent weakness at the ground floor because the area open for parking also cuts down on the area available for shear walls, and thus the available lateral strength. Without the requisite lateral strength in these weak stories, many buildings suffered heavy damage and even collapse. And all of this from an earthquake that was centered about 56 miles south of San Francisco.  One can only imagine what would happen if a similar earthquake occurred much closer.

In response to this threat, the City of San Francisco has embarked on a groundbreaking mandatory retrofit ordinance that will hopefully allow many of the city’s residents who live in these structures to “shelter in place” after the next “big one.” What buildings are affected by this ordinance? Wood-frame buildings built or permitted prior to January 1, 1978 with two or more stories over a soft- or weak-story that contain five or more dwelling units.

There are many questions that automatically pop up in response to this. How well does my building have to perform in order to enable me to shelter in place? Could I possibly shelter in place with a yellow tag on my building, or does it have to be green tagged? There is debate on this issue. What constitutes the “big one” – is it the “expected” more frequent earthquake, or is it the extremely rare, very large earthquake? The engineering criteria of the retrofit ordinance points toward it being the “expected” earthquake. Can these retrofits be done (economically) and will they make a difference?  Absolutely. How can you say that? We’ve tested them.

Simpson Strong-Tie was a proud sponsor and contributor to an ambitious project known as NEES-Soft. Led by Dr. John W. van de Lindt of Colorado State University, the project culminated with shake table testing of a full-scale four-story weak-story building on the outdoor shake table at the University of California San Diego in the summer of 2013. Constructed to be like a real San Francisco weak-story structure, the building offered a fantastic platform to test various retrofit technologies. One of the retrofit technologies tested was the Simpson Strong-Tie Strong Frame® special moment frame. Designed according to one of the engineering approaches (FEMA P-807) permitted in the City of San Francisco’s retrofit ordinance, the Strong Frame special moment frame performed extremely well, and we were able to conclusively demonstrate the improved performance of the building. Check out this link to understand some of the unique features that make this frame especially well suited for seismic retrofits of wood-frame structures. And don’t forget that any retrofit frame or wall is only one part of the complete load path needed for a successful retrofit!

The Strong Frame special moment frame did not materialize overnight in response to the new retrofit ordinance. The work on it and the other lateral force resisting products we manufacture began years earlier. It turns out that there are a whole bunch of people at our company, professional engineer or not, who are constantly thinking about this and share the same desire that developed in me back in 1989: let’s make products that help buildings not fall down in earthquakes. How can we help you on your project?  Let us know – we’d love to hear from you.

Fastener Catalog Breakdown: Technical Section LRFD Values

This week’s post was written by Bob Leichti, Manager of Engineering for Fastening Systems. Prior to joining Simpson Strong-Tie in 2012, Bob was an Engineering Manager covering structural fasteners, hand tools, regulatory compliance and code reports for a major manufacturer of power tools and equipment. Prior to that, Bob was a Professor in the Department of Wood Science and Engineering at Oregon State University. He received his B.S. and M.S. from the University of Illinois, and his M.S. and Ph.D. from Auburn University.

Structures and connections can be designed either using Allowable Strength Design (ASD) method or Load and Resistance Factor Design (LRFD) method. In the ASD method, the allowable strength is calculated by dividing the nominal strength by a safety factor. In the LRFD method, the design strength is calculated by multiplying the nominal strength by the resistance factor. In design, the adjusted ASD design value is compared to a calculated load or stress. As long as the adjusted ASD design value exceeds the calculated load of stress, then the ASD design value is judged safe. In LRFD design, the nominal strength is equated to factored loads. If the factored strength is greater than the factored loads, then the design can be accepted. ASD is the more common method adopted in the professional world.

LRFD is relatively new to wood design. Prior to 2005, the National Design Specification for Wood Construction (NDS) was based on allowable stress design (ASD). In the 2005 edition, the American Wood Council incorporated Load and Resistance Factor Design (LRFD) into the NDS. To this day, most wood design in the US relies on ASD, but the use of LRFD is becoming more common. On the other hand, the steel design industry already uses the LRFD philosophy for design, and for that reason, design values for steel self-drilling tapping screws are offered in both ASD and LRFD.

The published design values for Simpson Strong-Tie wood fastener products are in ASD format and the allowable loads are generally shown at a load duration factor of CD = 1.0. The reference design loads listed shall be multiplied by all adjustment factors listed in Table 10.3.1 of NDS 2012 to determine adjusted design values. The load tables are listed in ASD format because ICC-ES acceptance criteria, such as AC233 (Alternate Dowel-type Threaded Fasteners) and AC120 (Wood Frame Horizontal Diaphragms, Vertical Shear Walls, and Braced Walls with Alternate Fasteners), that are used to qualify structural wood screws do not address the development of LRFD values for wood screws. However, one can establish the nominal strength values for fasteners from reference ASD design values for use in LRFD format by following the instructions of NDS (2012), Table 10.3.1. Reference design values shall be multiplied by the format conversion factor KF as specified in Table N1 of NDS 2012. Format conversion factors adjust reference ASD design values to LRFD reference resistances. They are also multiplied by the resistance factor, Φ as specified in Table N2 and Time Effect Factor, λ as specified in Table N3.

For e.g., the table below lists the ASD allowable shear loads for SDWS screw in Douglas Fir-Larch and Southern Pine Lumber:

SDWS ­ Allowable Shear Loads ­ Douglas Fir-Larch and Southern Pine Lumber

Strong-Drive SDWS TIMBER-Screw ­Allowable Shear Loads ­ Douglas Fir-Larch and Southern Pine Lumber

For the SDWS22300DB screw with a wood side member thickness of 1.5 inches, the allowable shear load is 255 lbs. with a wood load duration factor of CD = 1.0. To convert this to an LRFD load, refer to table 10.3.1 of NDS 2012 and Appendix N, Tables N1, N2 and N3. Per Table 10.3.1 we need to multiply the reference load with format conversion factor KF, resistance factor, Φ and time effect factor, λ From the Table N1, the format conversion factor KF for connections is 2.16/Φ. From Table N2, for connections Φ=0.65. Let us assume a λ of 1.0 from Table N3. The LRFD load is calculated by multiplying the allowable shear load with the factors above.

LRFD load = Allowable shear load (at a load duration factor of CD = 1.0) x KFΦ λ 

LRFD Load = 255 x (2.16/0.65) x 0.65 x 1.0 = 551 lbs.

For steel self-drilling, self-tapping screws, the omega and resistance factors used for calculating ASD and LRFD loads are based on American Iron and Steel Institute (AISI) standard S100. For Simpson Strong-Tie steel self-drilling, self-tapping screws the load tables are listed in both ASD and LRFD format.

If the screw connection capacities are calculated based on tests, the ASD values are calculated by dividing the tested nominal strength which is the average of the ultimate strength values from all the tests with the safety factor, Ω. For LRFD load, the tested nominal strength is multiplied by a resistance factor, Φ. When tests are performed for evaluating the connection capacities, the safety factor, Ω and the resistance factor, Φ are evaluated in accordance with Section F of AISI S100. Simpson Strong-Tie derives the LRFD values for steel self-drilling, self-tapping screws in LRFD format because this is part of ICC-ES AC118 (Tapping Screw Fasteners). See evaluation report ICC-ES ESR 3006 for examples of ASD and LRFD design values for the same fastener products.

If the screw capacities are determined based on the calculated nominal strength, the ASD loads and LRFD loads are determined based on Section E4 of AISI S100. For e.g., the table below lists the ASD loads and the LRFD loads based on calculations for #14 x 1” screw.

E ­ Cold-Formed Steel Member Connection Loads, Steel to Steel

E ­ Cold-Formed Steel Member Connection Loads, Steel to Steel

From the table, for 33 mil (20ga) steel to 33 mil (20ga) steel shear connection, the calculated nominal shear strength is 600 lbs.

Nominal Strength = 600 lbs.

From Section E4, the safety and resistance factors for connections are:

Ω = 3.0

Φ = 0.5

ASD Load = Nominal Strength/Ω = 600 lbs./3.0 = 200 lbs.

LRFD Load = Nominal Strength x Φ = 600 lbs.x 0.5 = 300 lbs.

Now that you know the basics of ASD and LRFD, make sure you choose the one best suited for your specific material and construction application. If you have ideas for which of our products you would like to see in ASD and LRFD loads, be sure to let us know!

Applying new FEMA P-807 Weak Story Tool to Soft-Story Retrofit

This week’s blog was written by Louay Shamroukh, P.E., S.E., who is a regional engineering manager working out of the Simpson Strong-Tie Stockton branch. Louay is a licensed Structural Engineer in the State of California. He started his career with Simpson Strong-Tie in 1999 as a R&D engineer responsible for testing, improving and developing products for the light frame construction industry and he holds several wood construction connector patents. Louay serves as the liaison between the engineering department, customers, sales and manufacturing. He supervises a department that is tasked with providing technical and application support for Simpson Strong-Tie products to sales, specifiers and building officials. He explores market opportunities for developing new products through interaction with customers in the field and at industry events. Here is Louay’s post.

We have written about San Francisco’s Soft-Story Retrofit Ordinance and Soft-Story Retrofits before on the blog. I wanted to discuss in more detail the issues with soft story buildings and FEMA’s new tool for addressing them. Under the San Francisco Ordinance, wood-framed residential structures that have two or more stories over a “soft” or “weak” story require seismic retrofit. So far, more than 6,000 property owners have been notified about complying with the mandate.

Multi-unit wood-frame buildings with more than 80% open area on one first story wall or more than 50% on two adjacent walls are considered weak story buildings. During the 1971 San Fernando earthquake, 1989 Loma Prieta quake and the 1994 Northridge earthquake, this type of building often sustained major damage or completely collapsed. One cause for this structural weakness is the mixed use of the buildings, which dictates an open space and less partition walls on the first story than the upper stories.

Soft Story building

Figure 1: Multi-unit wood-frame building with first weak story.

Soft story building after an earthquake

Figure 2: Near collapse of typical weak-story wood-frame building.

The lack of exterior walls or partition walls on the first story leads to a considerable difference in lateral strength, stiffness and stability between the first story and the upper stories. During an earthquake, this difference exposes the first story to a concentrated lateral deformation in lieu of distributing it over the height of the structure. In the presence of large openings in the exterior walls, the concentrated lateral deformation is superimposed with the building’s tendency to twist.

Rotation of first story of a corner building

Figure 3: Rotation of first story of a corner building with openings on two side walls.

Buildings built prior to 1978 were constructed of materials and finishes that are archaic, non-ductile, with low displacement capabilities and poor detailing that can lead to earthquake damage, and in some cases, to building collapse. Some of these materials are stucco, diagonal sheathing, plaster on wood lath and plaster on gypsum lath that possess a maximum inter-story drift ratio of 2% or less.

unit load drift curves

Figure 4: Unit load drift curves for sheathing material with low displacement capacity vs plywood panel siding.

The Federal Emergency Management Agency (FEMA) has developed the FEMA P-807 guideline, “Seismic Evaluation and Retrofit of Multi-Unit Wood-Frame Buildings with Weak First Stories.” FEMA P-807 provides procedures for the analysis and seismic retrofit of weak first story buildings built with structurally archaic material.

FEMA P-807 Guideline

Figure 5: FEMA P-807 Guideline.

The guideline’s design philosophy is to provide a cost-effective seismic retrofit method limited to the first story without disrupting the occupancy of the upper stories. The guideline limits the retrofit to the first story by introducing sheathing materials or structural elements with high lateral displacement capacity. This is designed to improve seismic performance and reduce the risk of collapse without driving the earthquake forces into the upper stories and exposing them to the risk of damage or collapse.

nit load drift curves for sheathing material with high displacement capacity

Figure 6: Unit load drift curves for sheathing material with high displacement capacity used for retrofitting weak first story of a multi-unit wood frame building.

Unit load drift curves for Simpson Strong-Tie® Strong Frame® special moment frame with high displacement capacity

Figure 7: Unit load drift curves for Simpson Strong-Tie® Strong Frame® special moment frame with high displacement capacity used for retrofitting weak first story of a multi-unit wood frame building.

FEMA’s Weak Story Tool, an electronic tool developed for FEMA P-807, tabulates the walls in a building graphically. Each wall in the building has its inherent material capacity to provide resistance during an earthquake. The tool applies the rules of the provisions and performs the analytical calculation to evaluate the building before and after the retrofit. Performing the analysis manually and iteratively requires a considerable amount of time and calculation. On the other hand, the tool is a convenient mean that aids in the analysis and keeps checking the input as the assemblies, special moment frames and walls are added for seismic retrofit. A report summarizing the data and formulas is available once the retrofit meets the provisions of FEMA P-807.

Recently, the Simpson Strong-Tie® Strong Frame® special moment frame was added to the Weak Story Tool. The Strong Frame® special moment frame is a 100% field bolted connection frame that does not require field welding for the retrofit of an existing building. It has a unique replaceable patented Yield-Link™ structural fuse that provides the ductile lateral resistance with high lateral displacement capacity. In close quarters of an existing building, such as a parking garage or commercial space, the Strong Frame footprint is considerably smaller than other retrofit assemblies. It also eliminates the need for beam bracing normally required for special moment frames, which was discussed in a previous post.

Weak Story Tool with Strong Frame Special Moment Frame.


Figure 8: Weak Story Tool with Strong Frame Special Moment Frame.

To use the Simpson Strong-Tie lateral system solution in the Weak Story Tool, go to the Assemblies Tab, where you can select Strong Frame special moment frame as a retrofit assembly. The frame is specified in the Simpson Strong-Tie screen functionality after inputting the frame’s dimensions and the ultimate target force. After selecting the frame, the functionality provides the initial stiffness, yield strength, ultimate strength and drift at ultimate strength for the tri-linear backbone curve, which are seamlessly inputted into the Weak Story Tool.

New Assembly button to specify retrofit assemblies

Figure 9: New Assembly button to specify retrofit assemblies and Strong Frame special moment frame.

Strong Frame Special Moment Frame Functionality

Figure 10: Strong Frame Special Moment Frame Functionality.

The Weak Story Tool is a convenient and powerful tool that can save the specifier several hours of mundane work and resources. Please try out the Weak Story Tool with the addition of the Simpson Strong-Tie® Strong Frame® special moment frame and let us know what you think. We always appreciate the feedback!

FEMA’s Weak Story Tool can be downloaded here.

If you’re in the Bay Area, please join us for hands-on training on the use of the FEMA Weak Story Tool. Register here, bring your laptop, and join us in the Weak Story Tool workshop presented by Simpson Strong-Tie engineers on Wednesday, October 22 at Oakland City Hall, 1 Frank H. Ogawa Plaza, Oakland, California 94612.

Home Seismic Retrofit

The 6.0 magnitude earthquake that struck Napa, CA, in August caused more than 200 injuries and structural damage to many homes and businesses throughout the area. The quake was the largest to hit the San Francisco Bay Area since the Loma Prieta earthquake (6.9 magnitude) in 1989, prompting the governor to declare a state of emergency.

I have done several posts about San Francisco’s Soft-Story Retrofit Ordinance and some of NEES-Soft testing related to soft-story retrofits. The soft-story ordinance only addresses multi-unit residential units and does not require retrofit of single-family homes. Cities are reluctant to mandate seismic evaluation and retrofit of single-family homes for a number of reasons that I won’t discuss here. The draft Earthquake Safety Implementation Program (ESIP) for San Francisco will not recommend mandatory retrofit of single-family homes until 2030.

CAPSS Implementation Priority Worksheet

The good news is homeowners can retrofit their homes without waiting for the government. A couple years ago in this post, I discussed some of the tools available to retrofit existing buildings.

One of these tools is the 2012 International Existing Building Code (IEBC). The IEBC has provisions for repair, alteration, addition or change of occupancy in existing buildings and for strengthening existing buildings. For alterations, these provisions may not comply with current IBC requirements, but they are intended to maintain basic levels of fire and structural life safety. The IEBC also provides prescriptive provisions for strengthening existing buildings against earthquake damage, which include strengthening residential houses on raised or cripple wall foundations.

Cripple Wall Reinforcing Schematic

Cripple Wall Retrofit Schematic and Installation

Cripple Wall Retrofit Schematic and Installation

Cripple wall failures are a common type of damage observed in older homes, caused by inadequate shear strength in the cripple wall. An additional failure point is the attachment of the wood sill plate to the foundation. Having a strong connection between the wood structure and the concrete foundation is critical in an earthquake. Since the work required to strengthen these connections is typically performed in a crawlspace or unfinished basement, it is a relatively low-cost upgrade that is extremely beneficial to structural performance.

Retrofit with UFP Foundation Plate in Napa

Retrofit with UFP Foundation Plate in Napa

Our website has information for retrofitting your home. The Seismic Retrofit Guide has information about how earthquakes affect a home and the steps to take to reinforce the structural frame of a house. The Seismic Retrofit Detail Sheet is intended to help building departments, contractors and homeowners with seismic retrofitting. It includes common retrofit solutions for reinforcing cripple walls and foundation connections.

One business owner in Napa chose to retrofit her building when she purchased it. You can see her video narrative here.

Changes in IBC from 2009 to 2012: Seismic Design

The transition from one building code to the next always begs the question, “how is the newer code different?” There are several changes between the 2009 IBC and 2012 IBC that will change the way designers approach seismic design. This blog post is a broad overview of some of the changes. Since it’s not practical to cover all the changes between the previous and new codes in detail in one post, the discussion will be mainly on 2012 IBC and the corresponding ASCE7-10 reference standard.

Seismic ground motion map

Seismic ground motion map

The seismic ground motion maps have been updated to match ASCE7-10. The titles of the maps in IBC were revised from “Maximum Considered Earthquake Ground Motion” to “Risk-Targeted Maximum Considered Earthquake (MCER) Ground Motion Response Accelerations” in order to reflect the titles in 2009 NEHRP and ASCE 7-10. As in previous editions, some areas will prove difficult to read due to the contour lines, so the USGS site and GPS coordinates are recommended (http://earthquake.usgs.gov). Additional information about changes made for 2009 NEHRP is available at www.nibs.org or www.bssconline.org.

The term “occupancy category” was replaced with “risk category” in the 2012 IBC for consistency with the term used in ASCE 7-10. This change was made because it was decided that the use of the word “occupancy” implied the category was directly tied to occupancy classifications in the code, while the word “risk” more accurately communicates that the category is based on acceptable risk of failure.

Seis-pic 2ASCE7-10 revised the way designers use the corresponding Drift amplification, Cd, and Overstrength factor, Ωo, of the Response modification factor, R.  In ASCE7-05, when there is a vertical combination of different R-values, the Cd, and Ωo cannot decrease as you go down each level of a building. In ASCE7-10 (12.2.3.1), the Cd and Ωo always correspond to the R-Value as you go down. The adjacent figure illustrates the new provision to use the corresponding Cd, and Ωo with the R-value at each level.

ASCE7-10 (12.3.4.1) added a clarification for out-of-plane anchorage forces where the redundancy factor, p = 1.0.  The intent of the redundancy factor was to ensure the vertical seismic-resisting system with insufficient redundancy had adequate strength. The design forces for out-of-plane wall loading are not redundancy requirements. ASCE7-10 (12.11.12) revised the out-of-plane wall anchorage force equation where the anchorage forces are reduced for shorter diaphragm spans.

Seis-pic 3Light-frame construction structures are no longer exempt from amplification of accidental torsion in ASCE7-10 (12.8.4.3).  There are many structures vulnerable to torsional effects including some “tuck under” parking buildings that are often light-frame structures. See posts  titled Soft-Story Retrofits and City of San Francisco Implements Soft-Story Retrofit Ordinance for more discussion of soft-story, light-frame buildings.

This is just a brief summary of changes related to seismic design found in the 2012 IBC.  What are other changes that will modify your approach to seismic design?

Our Latest Online Resource: Steel Deck Diaphragm Calculator

Although Simpson Strong-Tie is best known for our structural products: engineered structural connectors, lateral systems, fasteners and fastening systems, anchoring products and most recently, concrete repair, protection and strengthening (RPS) systems, we are continually developing new and exciting software solutions. As we’ve discussed in prior blog posts, Simpson Strong-Tie has numerous software programs and web and mobile apps available for download or online use at www.strongtie.com/software. Today, I’d like to review our recently launched web app, the Steel Deck Diaphragm Calculator. The calculator is accessible from any web browser and doesn’t require downloading or installing special software.

While the method of designing and specifying a steel deck and its attachment can vary by region, most designers are familiar with the Steel Deck Institute (SDI) and its Diaphragm Design Manual, 3rd Edition (DDM03). DDM03 presents diaphragm shear strength and stiffness equations for various steel deck profiles and commonly used attachment types (welds, power-actuated fasteners, or screws). The calculations can be quite tedious, so the SDI has developed numerous tables using these equations and placed them at the back of DDM03 for easy reference.

Typical diaphragm shear table from SDI’s DDM03. Image credit: SDI.

Typical diaphragm shear table from SDI’s DDM03. Image credit: SDI.

Since the tables in DDM03 are based solely on the fasteners and deck profiles included, determining diaphragm capacities utilizing any other proprietary fastener or deck profile fall on the designer or the proprietary product’s manufacturer. Enter Simpson Strong-Tie.

Our Steel Deck Diaphragm Calculator enables users to produce custom diaphragm tables similar to those in DDM03, generate detailed calculations using SDI equations based on project-specific inputs, as well as optimize deck fastening systems to ensure the most cost-effective design is utilized. The calculator incorporates our X-series steel decking screws, including the recently launched Strong-Drive® XL Large-Head Metal Screw, which has one of the highest capacities in the industry and in most cases, can be used as a 1-for-1 replacement of pins or 5/8 diameter puddle welds. (For additional information comparing Simpson Strong-Tie X-series and XL screws to pins or welds, review F-Q- STLDECK14.)

Decide whether to optimize a design or generate diaphragm tables.

Decide whether to optimize a design or generate diaphragm tables.

The app can be used with minimal required input to generate tables and project-specific calculations. A more detailed analysis can be performed by inputting parameters for up to five unique zones, including overall dimensions, diaphragm shear, joist spacing, uplift and more.

Input detailed information for up to 5 different zones on the same project.

Input detailed information for up to 5 different zones on the same project.

One unfortunate aspect of many web apps is that your work is typically lost once you close your web browser. I’m happy to report that the folks here in our app development group have added the ability to save and upload project files. The calculator also provides a clean PDF printout of your results while giving you the option to generate a submittal package with supporting documentation, such as code reports, product approvals and installation recommendations.

Generate a submittal that includes all calculations and necessary supporting documentation.

Generate a submittal that includes all calculations and necessary supporting documentation.

Try the revised Steel Deck Diaphragm Calculator yourself and let us know what you think. We always appreciate the feedback!

Changes Made to ACI 318 With Respect to Adhesives Anchors in Concrete: What Engineers Need to Know

Jason Oakley

Guest blogger Jason Oakley

This week’s blog post is written by Jason Oakley. Jason is a California registered professional engineer who graduated from UCSD in 1997 with a degree in structural engineering and recently earned his MBA from Cal. State Fullerton. Before joining Simpson Strong-Tie in 2002, he was a design engineer for 5 years working on subterranean parking lots, movie sets, offshore drilling platforms, nuclear power plants, oil refineries, blast-resistant structures, fall protection, dry-dock supports for large seafaring ships including vibration analysis of components inside ships. He has amassed almost 20,000+ hours experience as an anchor systems field engineer for Simpson Strong-Tie. His territory includes Southern California, Hawaii and Guam.

For the first time, ACI 318 – 11 includes a design provision for adhesive anchors in concrete.  Previously, adhesive anchors were designed according to provisions found in both ICC Evaluation Service (ICC-ES) AC308 and ACI 318 – 08. A relatively new standard, ACI 355.4, must be used to qualify adhesive anchors in concrete. This new standard, along with ACI 318 – 11, contains important changes that will affect anchor systems designed to the 2012 IBC.  Not all changes are discussed here. I will only focus on what you – the engineer – should be aware of.

ACI 355.4 requires that adhesive anchors in concrete be evaluated using a bond strength (measured in terms of psi and used with the surface area of the embedded portion of the anchor) that corresponds to a long-term temperature (LTT) of 110 degrees F to account for potential elevated temperature exposure conditions. This wasn’t necessarily the case previously where, for example, the engineer could elect to use a temperature category that listed bond strength values based on a LTT of 75 degrees F. The issue here is creep.

Creep, in the world of adhesive anchors, looks at how well the anchor can resist load without too much axial displacement over a period of not minutes, not hours, not even years but decades. As a general rule, it’s no surprise that creep worsens as the temperature rises for almost any material.  In our case, the bond strength is effectively reduced. Most adhesives, if not all, currently list bond strength values that correspond to a LTT of 110 degrees F. Make sure to select the temperature category that meets this minimum requirement. Some adhesives will experience a reduction in bond strength at an LTT of 110 degrees F, some won’t.

What about applications involving short-term-only loading? Is creep still relevant? Generally, you’ll find that adhesive anchors negatively impacted by the higher LTT requirement will gain back much of their load for seismic/wind-only load applications. So creep becomes irrelevant.

While adhesive anchors used solely for the purpose of resisting short-term loads will remain largely unaffected by this code change, significant changes have been made to the design and installation of adhesive anchors when used for sustained loading applications (e.g. dead load, live load, etc.).

First, the bond strength must be reduced by a factor of 0.55 as compared to 0.75 under the previous code (following ICC-ES AC308). New to the code, section D.9.2.2 of ACI 318 App. D requires that adhesive anchors used for resisting sustained loads be installed by someone who has taken the Adhesive Anchor Installation Certification (AAIC) program. The installer must show proof that he/she is certified by passing both a written and performance examination. Installing adhesive overhead requires some skill. So it’s no surprise that the installer must satisfactorily demonstrate proficiency by blindly installing adhesive overhead into an inverted test tube that will later be cut in half and graded for the presence of voids.  Figure 1 shows no voids, so the installer passed.

ACI-CRSI Installer Workbook Publication

Figure 1 [from ACI-CRSI Installer Workbook Publication CP-80 (12)]

However, exceptions do exist. If you’re working on a hospital or school in California, the 2013 CBC (Table 1705A.3 footnote c) requires that all horizontal and overhead adhesives anchors – irrespective of load condition – be installed by a Certified Adhesive Anchor Installer (CAAI). This deviates from ACI 318 D.9.2.2.

Arguably, with AAIC, there’s an added cost to using adhesives for anchorage designed for sustained loading. However, for sustained loading applications best suited for adhesive anchors it should come as peace of mind to the engineer, owner, contractor and other parties involved with the construction project that a certified installer has been employed to ensure that the adhesive anchor has been installed in accordance with the manufacturer’s printed installation instructions.

While the engineer should be aware of the above limitations placed on adhesive anchors, by no means should it hamper their design. There are several options available to the engineer. Table 1 compares the tensile design strength of three common types of anchors – two adhesives, two mechanical anchors (one screw and one expansion type) – determined using the new design provision ACI 318 -11. While the creep test results show a reduced capacity for adhesive A, it does show a significant increase in load for seismic-only applications because , as we discussed earlier, creep is no longer an issue. Some adhesives, like adhesive B, will do well under the creep test (at an elevated LTT of 110 degrees F), so any capacity increase for seismic-only applications will be small.

Tensile Design Strength between 3 types of anchors.

Table 1

What three important points can we glean from Table 1? First, all things being equal, mechanical anchors will typically achieve higher “code values” for sustained loading applications relative to adhesives. Second, mechanical anchors are easier to install overhead. Third, AAIC is not required for mechanical anchors. While these reasons support using mechanical anchors for overhead anchorage, doing so is nothing new. The bulk of overhead attachments have almost always been made with mechanical anchors mainly because it’s just easier to do it that way.

Perhaps up to 95% of adhesives are used to secure rebar to concrete – we’ll call them rebar dowels. Like any anchor, rebar dowels can be used to resist seismic and/or sustained loads. While the exact breakdown is hard to determine, arguably, the bulk of rebar dowels in the west coast are found in seismic retrofits and renovations used to thicken walls, tie-in new concrete shear walls, connect new drag struts, strengthen existing concrete elements, etc., all for the purpose of strengthening the lateral capacity of the existing structure to withstand greater earthquake and/or wind loads. These typically won’t require a CAAI, but it might if it’s a school or hospital project that requires overhead or horizontal anchors. Some rebar dowels are used for enlarging footings to withstand greater dead and live loads, so these would require a CAAI. Remember: the bond strength can be lower than expected for sustained loading applications, so you may want to use an adhesive that does well at a LTT of 110 degrees F if that’s what your design requires.

One new benefit of ACI 318 is that the engineer can now design adhesive anchors to go into lightweight concrete using the factors found in section D.3.6.

One significant change engineers should include in their specification is that the concrete must be aged at least 21 days before installing an adhesive. Previously, the industry standard was to wait seven days. For additional information regarding adhesives installed into younger normal-weight concrete, read the following Simpson Strong-Tie engineering letter: http://www.strongtie.com/ftp/letters/generic/L-A-ADHGRNCON14.pdf

What are you experiencing in the design of your anchors in your jurisdictions? Leave a comment down below because we would like to know.