How often do you get the opportunity to high five a co-worker in the office? Maybe it’s when you just worked through a complex calculation, or finally figured out that tough detail. Whatever it might be, there are times when we should raise a hand and celebrate the hard work that we do. So when we recently relaunched the Simpson Strong-Tie Strong-Rod™ Systems website, which includes a link to our new Shallow Podium Anchorage Solutions, there were a few high fives going around the office. With that in mind, we want to share the latest developments and continue our anchorage-to-concrete blog discussions that began in May 2012, continued with a March 2014 post referencing the Structure magazine article on anchor testing, and more recently one discussing our release of anchor reinforcement solutions for Steel Strong-Wall® shearwall to grade beams.
Anchor Reinforcement Testing and Research Program
Simpson Strong-Tie has been studying cast-in-place tension anchorage and anchor reinforcement concepts extensively over the past several years. Designing an anchor solution in a thin concrete slab for a high anchor demand load while meeting the ductility provisions of ACI 318-11, D.3.3.4.3 is extremely challenging. A strong industry-need for a safe, logical, yet economical design solution, led to a cooperative research program between Structural Engineers Association of Northern California (SEAONC) members and Simpson Strong-Tie. Testing was initiated by a Special Project Initiative grant from SEAONC to members Andy Fennell, P.E. (principal at SCL) and Gary Mochizuki, S.E. (principal at Structural Solutions at the time, now with Simpson Strong-Tie). We completed the program with continued involvement of SEAONC members. This is the second time we have partnered with SEAONC on non-proprietary anchor bolt testing. The first partnership, on sill plate anchor bolts in shear, resulted in successful code change provisions (led by SEAONC) restoring the capacity of these connections to pre-ACI 318 Appendix D values.
This current research program has focused on non-proprietary anchor reinforcement detailing that increases the nominal breakout capacity of concrete slabs. The anchor design satisfies the seismic ductility requirements of ACI 318-11 Appendix D and also significantly increases design capacity for wind applications. The project goal was to provide a design solution for the industry with independently witnessed proof testing of the anchor reinforcement detailing and application of ACI 318-11 Appendix D design procedures. (Note: Appendix D is moved into a new Chapter 17 in ACI 318-14.)
Significant Test Findings and Design Concepts
Anchoring to relatively thin concrete slabs introduces many unique challenges, so testing was bound to reveal some unique findings. The goal was to increase concrete breakout capacities and also satisfy the ACI 318 anchor ductility requirements with anchor reinforcement detailing. Here are some of the significant findings:
- Relatively thin concrete slabs do not allow the placement of anchor reinforcement to drag the load down into a larger mass of concrete as shown in RD.5.2.9. Modified anchor reinforcement was required (Figure 2). The required area of anchor reinforcement is based on D.3.3.4.3(a) where the required area of anchor reinforcement exceeds the anchor steel strength, or 1.2Nsa < (nAsfy x 0.707). The 0.707 is for the 45-degree slope of the bars. The proof testing showed the horizontal leg development outside the cone and continuity through the cone adequately developed the anchor reinforcement.
- ACI 318-11, D.4.2.1 states that when anchor reinforcement is provided, calculation of concrete breakout strength is not required. You know we love load path discussions, so where does the load go once it gets into the anchor reinforcement? The tests indicated that when the anchor reinforcement is provided, the concrete breakout area increases. This limit state is an extended breakout area past the anchor reinforcement bends that will form when that reinforcement is properly quantified and configured. The extended breakout is similar to multiple anchors loading the slab at each bottom bend of the anchor reinforcement. We have applied this concept to the calculations to evaluate extended breakout past the anchor reinforcement bends.
- Let’s follow the load path some more. Once the anchor is connected to the slab, what is the slab bending capacity? The testing showed that to achieve the anchorage capacity, the slab must have an adequate amount of flexural reinforcement with anchorage forces corresponding to ACI 318-11, Section D.3.3.4.3 applied to the slab. Guidance from this section says to apply the anchor tension loads obtained from either design load combinations that include E, with E increased by Omega, or 1.2 x Nominal steel strength of the anchor (Nsa). If the anchors are not oversized, designing for 1.2Nsa should be the most economical solution. For wind applications, the slab Designer should consider the project specified design loads.
- A vertical concrete block shear forming at the anchor bearing plate is possible if the anchor embedment is shallow and the anchor reinforcement is working to resist the initial anchor bolt breakout area. Our testing showed that this block shear is separate from Appendix D Pullout and is dependent on embedment depth, perimeter of the bearing surface and concrete strength.
- For anchors with shallow embedment that have a double nut and washer, the concrete breakout can begin from the top nut, thereby reducing the effective embedment depth. To address this, we eliminated the top nut from our specified anchor assembly kit to insure the breakout begins from the top of the fixed-in-place plate washer.
- The testing and modeling also allowed us to re-examine the appropriate bearing area for the plate washer, Abrg. The flat top surface of a nut is typically circular due to the chamfer at the points, so the resulting bearing area of the plate washer is circular extending out the thickness of the plate from the flat-to-flat dimension of the nut. For near-edge conditions, the side-face blowout capacity can be the controlling limit state and where the plate washer bearing area becomes more important.
Edge testing with anchor reinforcement details showed that the breakout area will spread out and begin from the anchor reinforcement bends, like the mid-slab. In a mid-slab condition, the breakout slope follows the 1.5:1 or 35 degree slope used in Appendix D. However for the near edge, we found that 1.5 x effective embedment (hef) from anchor reinforcement bends only holds true parallel to the edge. Due to eccentricities, the breakout angle from the anchor reinforcement bends into the slab (perpendicular to the edge) is steeper and a steeper 45 degree slope