Testing Teases Out Hidden Capacities of Reclusive Connector — New Data Available on the Simpson Strong-Tie® CBH Concealed Beam Hanger for Mass Timber

In North America, CLT and mass timber construction have garnered considerable press over the last few years, both inside the building industry and beyond. The burgeoning development has inspired new research centers and at least one annual conference — now in its eighth year and attracting scores of presenters and exhibitors and hundreds of attendees from around the world. Numerous observers are even heralding mass timber, or tall timber, as the necessary future of the fast-growing built environment.  

Continue Reading

Overview of the Strength-Based Cracked and Uncracked Masonry Design Standards for Adhesive Anchors

We’re entering the year 2024 — welcome to the world of cracked and uncracked masonry. The last time Simpson Strong-Tie wrote a blog post regarding design criteria for post-installed anchors in masonry was in 2019, and ICC-ES was considering the adoption of a revised version of AC58, the Acceptance Criteria for Adhesive Anchors in Cracked and Uncracked Masonry Elements. Acceptance Criteria, or ACs, outline the testing that a manufacturer must comply with in order to get an evaluation report. In some cases, the ACs contain calculations methods if they are otherwise unavailable. If you missed the previous blog post, here is a link so you can explore a bit of the history that has led us to where we are today.

Continue Reading

What’s New with Mass Timber?

Simpson Strong-Tie’s Greg Bundy, Senior Branch Engineer in Columbus, Ohio, recently led a training webinar on mass timber advancements. The workshop covered topics like the NHERI TallWood Project and a new guide for cross-laminated timber diaphragm design. The hands-on session featured installation of innovative products for structural engineers.

Continue Reading

Up to the Test: Introducing the Heavy Seated Knife Plate Beam Hanger for Mass Timber

In response to the increasing demand for mass timber construction, Simpson Strong-Tie  has created mass timber solutions for these builds. These product addition, include our Heavy Seated Knife Plate (HSKP), ACBH concealed beam hanger,  and CBH concealed beam hanger. Gain insights into the design, testing, and efficiency of the HSKP in achieving high loads with fewer fasteners. The blog underscores the structural mechanics and the ongoing process of pushing connector limits in mass timber construction.

Continue Reading

Developing High-Capacity Tension Straps for Mass Timber Engineering

Mass timber buildings use cross-laminated timber (CLT) or mass plywood panels to create horizontal diaphragms to transfer wind and seismic forces into the vertical elements of the lateral-force-resisting system. Spline connections resist shear forces at the panel joints, which I discussed in this blog post. I wanted to discuss several options for tension straps used for chord splices and collector forces. This blog will not discuss methods for calculating design forces. Instead, I am going to focus on several strap products and how we developed their allowable loads. 

Continue Reading

Connecting Engineers, Innovation, and Fun: Simpson Strong-Tie’s Topgolf Event in Utah

The Simpson Strong-Tie structural steel team held an event earlier this year at Topgolf in Vineyard, Utah, to host 65 engineers. The view from the green range at this new Topgolf location was breathtaking with snowy peaks, and the view inside was not bad either, since you could see our Yield-Link® moment connection.

Continue Reading

Learn How to Strengthen Your Structural Steel Designs with the Yield-Link® Brace Connection Webinar Series

The Yield-Link brace connection (YLBC) from Simpson Strong-Tie is an innovative solution for isolating damage to ensure that braced frames within structural steel buildings remain intact during a seismic or wind event. With predesigned, bolted connections, the YLBC simplifies design work, eliminates the need for field welding, and is easy to incorporate into new builds or retrofits. Continue Reading

Mass Timber Diaphragm Options with Four Different Connection Types — How Our LDSS48 Light Diaphragm Spline Strap Evolved

Floors and roofs on mass timber buildings are constructed from large panels of engineered wood, such as cross-laminated timber (CLT) or mass plywood.  Designers join these prefabricated panels together on site to create a structural horizontal diaphragm to transfer wind and seismic loads to the vertical elements of the lateral force resisting system.  Shear forces between panels must be transferred through these panel-to-panel connections.  Conventional wood structural panel sheathed diaphragms have shear capacities and fastener spacing tabulated in Special Design Provisions for Wind and Seismic (AWC SDPWS). Mass timber diaphragms, on the other hand, require some more design work by the designer. 

Continue Reading

Dry, Soaked, or Submerged Concrete — SET-3G Adhesive Allows Anchoring in Any Condition

Modern construction schedules and conditions create a demand for solutions that can perform in a wide variety of environmentsIn the following post, Field Engineer Chris Johnson provides a rundown of different concrete and hole conditions for adhesive anchoring, the related design factors, and proper installation instructions and approved adhesive products for submerged anchorage.   

Continue Reading

Simpson Strong-Tie Engineer to Talk on Mass Timber Construction and Design

Simpson Strong-Tie is proud to announce that one of our product engineers, Bonnie Yang, Ph.D., P.E., CFS, has been invited to give a public lecture on mass timber connections. The date of her lecture will be March 3 at 11 a.m. PST. Yang’s lecture will be part of a Mass Timber mini-lecture series hosted by the School of Architecture at Mississippi State University in partnership with the Mississippi Forestry Association.  

Continue Reading