Concrete Anchorage for ASD Designs

One of the first things I learned in school about using load combinations was that you had to pick either Load and Resistance Factor Design (LRFD)/Strength Design (SD) or Allowable Stress Design (ASD) for a building and stick with it, no mixing allowed! This worked for the most part since many material design standards were available in a dual format. So even though I may prefer to use LRFD for steel and ASD for wood, when a steel beam was needed at the bottom of a wood-framed building that was designed using ASD load combinations, the steel beam could easily be designed using the ASD loads that were already calculated for the wood framing above since AISC 360 is a dual- format material standard. And when the wood-framed building had to anchor to concrete, ASD anchor values were available in the IBC for cast-in-place anchors and from manufacturers for post-installed anchors in easy-to-use tables, even though ACI 318 was not a dual-format material standard. (Those were good times!)

Then along came ACI 318-02 and its introduction of Appendix D – Anchoring to Concrete, which requires the use of Strength Design. The 2003 IBC referenced Appendix D for Strength Design anchorage, but it also provided a table of ASD values for some cast-in-place headed anchors that did not resist earthquake loads or effects. This option to use ASD anchors for limited cases remained in the 2006, 2009 and 2012 codes. In the 2015 IBC, all references to the ASD anchor values have been removed, closing the book on the old way of designing anchors.

ICC-ES-equation-tensionSo what do you do now? Well, there is some guidance provided by ICC-ES for manufacturers to convert calculated SD capacities to ASD allowable load values. Since there is no conversion procedure stated in the IBC or referenced standards, designers may want to use this generally accepted method for converting anchor capacities designed using ACI 318. ICC-ES acceptance criteria for post-installed mechanical and adhesive anchors (AC193 and AC308) and cast-in-place steel connectors and proprietary bolts (AC398 and AC399) outline a procedure to convert LRFD capacities to ASD using a weighted average for the governing LRFD/SD load combination. So if the governing load combination for this anchor was 1.2D + 1.6L and the dead load was 1,000 pounds and the live load was 4,000, then the conversion factor would be (1.2)(0.2) + (1.6)(0.8) = 1.52 (keep in mind that the LRFD/SD capacity is divided by the conversion factor in the ICC-ES equation shown here for tension).

Right away, there are a few things that you may be thinking:

  1. What about load factors that may exist in ASD load combinations?
  2. It may just be easier to just recalculate my design loads using LRFD/SD combinations!
  3. The resulting allowable loads will vary based on the load type, or combination thereof.
  4. If the ACI 318 design strength is limited by the steel anchor, then the conversion will result in an allowable load that is different from the allowable load listed for the steel element in AISC 360.

Let’s take a look at these objections one by one.

Item 1: Since unfactored earthquake loads are determined at the ultimate level in the IBC, they have an LRFD/SD load factor of 1.0 and an ASD load factor less than 1.0, which is also true for wind loads in the 2012 and 2015 IBC (see graphic below). Using the LRFD/SD load factor of 1.0 obviously does not convert the capacity from LRFD to ASD so you must also account for ASD load factors when calculating the conversion factor. To do so, instead of just using the LRFD load factor, use the ratio of LRFD Factor over ASD Factor. So if the governing load combination for an anchor was 0.9D + 1.0E and the dead load was 1,000 pounds and the seismic load was 4,000, then the conversion factor would be (0.9)(0.2) + (1.0/0.7)(0.8) = 1.32.

ICC-ES-equations

Item 2: Even though the weighted average conversion requires you to go back and dissect the demand load into its various load types, often this can be simplified. ICC-ES acceptance criteria permit you to conservatively use the largest load factor. The most common application I run into is working with ASD-level tension loads for wood shearwall overturning that must be evaluated using SD-level capacities for the concrete anchorage. Since these loads almost always consist of wind or seismic loads, using the largest factor is not overly conservative. Depending on the direction in which you are converting the demand loads or resistance capacities, the adjustment factors are as shown in the figure below. Affected Simpson Strong-Tie products now have different allowable load tables for each load type. (For examples, see pp. 33-36 of our Wood Construction Connectors catalog for wind/seismic tables and pp. 28-30 of our Anchoring and Fastening Systems catalog for static/wind/seismic tables.)

IBC-ealier-later

Item 3: I am unsure whether there is any sound rationale for having allowable loads for an anchor resisting 10% dead load and 90% live load differ from those of an anchor that resists 20% dead load and 80% live load. Perhaps a reader could share some insight, but I just accept it as an expedience for constructing an ASD conversion method for a material design standard that was developed for SD methodology only.

Item 4: We have differing opinions within our engineering department on how to handle the steel strength component of the various SD failure modes listed in ACI 318. Some believe all SD failure modes in ACI 318 should be converted using the load factor conversion method. I side with others who believe that the ASD capacity of a steel element should be determined using AISC 360. So when converting SD anchor tension values for a headed anchor, I would apply the conversion factor to the concrete breakout and pullout failure modes from ACI 318, but use the ASD steel strength from AISC 360.

Finally, I wanted to point out that the seismic provisions in ACI 318, such as ductility and stretch length, must be considered when designing anchors and are not always apparent when simply converting to ASD. For this reason, I usually suggest converting ASD demand loads to SD levels so you can use our Anchor Designer™ software to check all of the ACI 318 provisions. But for some quick references, we now publish tabulated ASD values for our code-listed mechanical and adhesive anchors in our C-A-2016 catalog —  just be sure to read all of the footnotes!

Author: Shane Vilasineekul

When I started job searching my senior yearof college, I had several interviews with consulting firms before I saw a small flier, tacked to a hallway bulletin board, for interviews at a company called Simpson Strong-Tie. The name was new to me (wood design was not in the curriculum) and I hadn’t considered working for a manufacturing company, but I decided to schedule an interview (partly because The Simpsons was my favorite show at the time) and was fortunate to get the job. At the time, one of my biggest concerns was that I would gain little structural engineering experience working for a “joist hanger” company. Well, it turned out that Simpson Strong-Tie was growing its line of concrete anchors and lateral force-resisting systems, and it was the Engineering Department’s philosophy that we had to be experts in all areas relating to these product lines in order to support them. Over the next several years I worked with, and was mentored by, some great engineers who helped me develop as a structural engineer and truly appreciate our profession. There are still times when I feel I haven’t paid my dues, but I am quickly reminded by my colleagues how lucky I am to have never had to worry about billable hours. I graduated from Ohio State University in 1999 with a BS in Civil Engineering and hold a PE license in several states. For the last several years, I have been managing the engineering group out of the Simpson Strong-Tie Columbus, Ohio branch, which covers 24 states across the Midwest, Mid-Atlantic, and New England. The engineers at our branch focus on supporting our products through education, new product development, and by offering technical expertise.

1 thought on “Concrete Anchorage for ASD Designs”

  1. There is a fifth option as well: Start getting comfortable using LRFD timber design. NDS has LRFD options. The biggest constraint on LRFD timber is timber connector manufacturer’s lack of LRFD timber connector values (hint hint, poke poke). Steel, Concrete, Cold Formed Steel, Timber, even things like Aluminum all have LRFD design codes now. It may be time to start biting the bullet and using LRFD.

Comments are closed.