New Simpson Strong-Tie Anchor Designer software

Remember back to the days when you used allowable stress design for designing anchorage to concrete? Once you had your design loads, selecting an anchor was quick and easy. The 1997 UBC covered the anchorage to concrete in less than two pages, so the calculation was painless. Post-installed anchors were even easier, since allowable loads were tabulated and you just needed to apply a couple of edge distance and spacing reductions.

Since the introduction of strength design provisions and the adoption of ACI 318 Appendix D, first in the 2000 IBC, designing code-compliant anchorage to concrete has become much more complex. At least once (and probably not more) armed with a pencil,  calculator, and an eraser, most of us have set out to design a ‘simple’ anchorage to concrete connection using the  Appendix D provisions. Several pages of calculations later (and hopefully with a solution to the problem), most of us, I imagine, came to realize that designing anchorages to concrete by hand required much more time and effort than we anticipated or could allocate time for. As a result, many of us probably created an Excel template to speed up the design process using built-in functions and some Visual Basic programming.

I'm never going for looks on my spreadsheets.
I’m never going for looks on my spreadsheets.

The question is: are you still using the template?

For me, the answer is an emphatic “NO”, mainly because the spreadsheet I created has limited capability given the complexity in adapting the design methodology to complex anchor layouts, changes to the design provisions with each new code edition, and the need to add/modify data each time a new post-installed anchor product is introduced.

Screenshot of Anchor Designer software.
Screenshot of Anchor Designer software.
Screenshot of Anchor Designer Load Wizard
Screenshot of Anchor Designer Load Wizard

Fortunately for engineers, some anchor manufacturers like Simpson Strong-Tie have developed free design software like our new Anchor Designer software. The goal of the software is to assist engineers and designers in designing anchorages in concrete quickly, efficiently and with confidence, while providing comprehensive calculations conforming to ACI 318 Appendix D (and also Canadian Standard Association A23.3 Annex D, European Technical Approval Guideline, ETAG 001 and European Organisation for Technical Approvals, EOTA Technical Report TR029) using up-to-date data for code compliant anchor products. It’s a tool with an easy-to-understand 3D graphics user interface (which certainly looks far better than my Excel template). If you haven’t downloaded a copy of the software yet at, I would recommend it to help save you time and effort.

– Paul

Paul McEntee

Author: Paul McEntee

A couple of years back we hosted a “Take your daughter or son to work day,” which was a great opportunity for our children to find out what their parents did. We had different activities for the kids to learn about careers and the importance of education in opening up career opportunities. People often ask me what I do for Simpson Strong-Tie and I sometimes laugh about how my son Ryan responded to a questionnaire he filled out that day:

Q.   What is your mom/dad's job?
A.   Goes and gets coffee and sits at his desk

Q.   What does your mom/dad actually do at work?
A.   Walks in the test lab and checks things

When I am not checking things in the lab or sitting at my desk drinking coffee, I manage Engineering Research and Development for Simpson Strong-Tie, focusing on new product development for connectors and lateral systems.

I graduated from the University of California at Berkeley and I am a licensed Civil and Structural Engineer in California. Prior to joining Simpson Strong-Tie, I worked for 10 years as a consulting structural engineer designing commercial, industrial, multi-family, mixed-use and retail projects. I was fortunate in those years to work at a great engineering firm that did a lot of everything. This allowed me to gain experience designing with wood, structural steel, concrete, concrete block and cold-formed steel as well as working on many seismic retrofits of historic unreinforced masonry buildings.