Narrow Face Installations

Engineered wood products have been used in wood-framed construction for many decades. Early forms of engineered wood include plywood as replacement for 1x wood sheathing and glu-laminated beams that could be fabricated in larger sizes with optimized material utilization. I-joists utilizing deep plywood webs and solid sawn lumber flanges solved the challenge of longer floor spans. Oriented strand board (OSB) eventually replaced plywood in the webs, while the innovation of laminated veneer lumber (LVL) became common in the flange material.

In addition to I-joists, structural composite lumber is widely used as a replacement for solid lumber. This could be for a number of reasons such as availability of longer lengths, straighter sections and higher strengths. Structural composite lumber (SCL) may be LVL, parallel strand lumber (PSL), laminated strand lumber (LSL) or oriented strand board (OSB).

Douglas fir and PSL Post
Douglas fir and PSL Post
Douglas fir and PSL Post
Douglas fir and PSL Post

 

Structural composite lumber has two faces. If the cross-section is rectangular, say 3½x5¼, the narrow face will show the edges of the SCL layers. In a square section, the face that shows the SCL layers is still referred to as the narrow face. Fasteners will have lower performance when they are installed in the narrow face of SCL. While this is not an issue for beams, Simpson Strong-Tie connectors such as post bases, column caps or holdowns may have reduced allowable loads when installed on the narrow face of SCL columns.

Test setup and failure mode of HDU installed on LVL
Test setup and failure mode of HDU installed on LVL
Test setup and failure mode of HDU installed on LVL
Test setup and failure mode of HDU installed on LVL
CC Column Cap Setup on LVL
CC Column Cap Setup on LVL

To support the use of Simpson Strong-Tie connectors installed on SCL post material, we have run many tests over the years.  The reductions are published in the technical bulletins, T-SCLCLM13 (U.S. version) and T-C-SCLCLMCAN13 (Canada version). The reduction factors range from 0.45 to 1.0, and vary based on SCL material type – LSL, PSL, or LVL – and also by connector and fastener type.

It is important to understand the magnitude of the reductions. While narrow face installations may be unavoidable, engineers will need to specify the correct lumber and hardware combination to meet the design loads.

Share additional thoughts by leaving a comment.

Paul McEntee

Author: Paul McEntee

A couple of years back we hosted a “Take your daughter or son to work day,” which was a great opportunity for our children to find out what their parents did. We had different activities for the kids to learn about careers and the importance of education in opening up career opportunities. People often ask me what I do for Simpson Strong-Tie and I sometimes laugh about how my son Ryan responded to a questionnaire he filled out that day:

Q.   What is your mom/dad's job?
A.   Goes and gets coffee and sits at his desk

Q.   What does your mom/dad actually do at work?
A.   Walks in the test lab and checks things

When I am not checking things in the lab or sitting at my desk drinking coffee, I manage Engineering Research and Development for Simpson Strong-Tie, focusing on new product development for connectors and lateral systems.

I graduated from the University of California at Berkeley and I am a licensed Civil and Structural Engineer in California. Prior to joining Simpson Strong-Tie, I worked for 10 years as a consulting structural engineer designing commercial, industrial, multi-family, mixed-use and retail projects. I was fortunate in those years to work at a great engineering firm that did a lot of everything. This allowed me to gain experience designing with wood, structural steel, concrete, concrete block and cold-formed steel as well as working on many seismic retrofits of historic unreinforced masonry buildings.