Snow Loads vs. Top Chord Live Loads – A Historical Look at Snow Loading for Trusses

In my former life working as a consulting engineer, I reviewed many truss submittal packages. I remember during my reviews wondering how it was possible to get so much information on to an 8½ inch by 11 inch piece of paper. I also remember how a lot of what was being reported was difficult to understand without some help interpreting the information. 

As many of you may know, Simpson Strong-Tie has ventured into the truss industry and we are now offering truss connector plates and software to component manufacturers around the country. So given my past experiences, I figure some of you might appreciate some insight into the engineering that goes on behind those truss submittal packages. So I have asked one of our great truss engineers, Kelly Sias, to put together some blog posts on the topic that we can share our knowledge with you. Kelly has worked in the truss industry for years and spent time as the Technical Director at the Truss Plate Institute. I am sure her blog posts are going to help all of us have a better appreciation for trusses.

Have you ever been involved in a discussion with someone on a project that ended with “but that’s the way we’ve always done it!”? I heard those words spoken by a contractor in my first engineering job when I tried explaining why his single stud would not work at a particular location. When he said something about his grandfather having always done it that way, I knew I could explain the calculations all day and it wouldn’t do much good.

Fast forward several years to the present. The topic and audience are different, but the issue is still the same – it’s difficult to change the way something has always been done. Take snow loading on trusses as an example.  Historically, snow load has been lumped in as part of the top chord live loading on a truss.  A long-standing practice in many areas has been to take the ground snow load and simply enter it into the Top Chord Live Load (TCLL) box in the truss design software. Even the truss design standard, ANSI/TPI 1, and the IRC/IBC codes have included snow load as part of the top chord live load in the list of required design loads to be included on the truss design drawing:

List of required design loads to be included on the truss design drawing
List of required design loads to be included on the truss design drawing

The only problem is that snow load is not a live load, and no additional snow load considerations, such as unbalanced snow loads, are taken into account when it is applied as a live load in the design program.

This may in fact be acceptable at times, particularly when the full ground snow is used as the top chord live load. After all, this is in-line with the prescriptive approach taken in the IRC, as specified in section R301.6 Roof Load:

Roof Load
Roof Load

where Table R301.2.(1) is based on the local ground snow load. In many jurisdictions, the use of the full ground snow load for the balanced snow case is considered adequate to address any other snow-related effects including unbalanced snow loads.

The alternative approach is to treat snow loads as snow loads and live loads as live loads, and actually design the truss for the input snow loads and corresponding snow load design criteria. This puts all of the relevant snow loading parameters right onto the truss design drawing. However, because of the historical precedence to treat snow loads as live loads, this method has actually caused confusion in some Building Departments. Some departments see both a snow load and a live load and get confused by the live load. Some want to see snow load, but only the ground snow load. Others say they want to see a TCLL on the drawing and that’s it. Interestingly, the IBC-09 actually modified its provision regarding truss design drawings to remove snow load from the top chord live load provision and list it separately as part of the environmental loads:

Design Loads
Design Loads

Being from snow country (and actually being a fan of the white stuff every year), I might be a bit biased, but I think the IBC change is a change for the better.  Maybe it will help remind people that snow loads are not live loads. I’m not saying that ground snow shouldn’t ever be used as the roof design load; I’m just saying it should still be called (and reported as) a snow load. I think that’s an important first step to making sure everyone in the job is on the same page regarding what snow load considerations have (and have not) been included in the design.

What are your thoughts about snow loads being treated as live loads in the design of roof trusses? Let us know in the comments below.

Paul McEntee

Author: Paul McEntee

A couple of years back we hosted a “Take your daughter or son to work day,” which was a great opportunity for our children to find out what their parents did. We had different activities for the kids to learn about careers and the importance of education in opening up career opportunities. People often ask me what I do for Simpson Strong-Tie and I sometimes laugh about how my son Ryan responded to a questionnaire he filled out that day:

Q.   What is your mom/dad's job?
A.   Goes and gets coffee and sits at his desk

Q.   What does your mom/dad actually do at work?
A.   Walks in the test lab and checks things

When I am not checking things in the lab or sitting at my desk drinking coffee, I manage Engineering Research and Development for Simpson Strong-Tie, focusing on new product development for connectors and lateral systems.

I graduated from the University of California at Berkeley and I am a licensed Civil and Structural Engineer in California. Prior to joining Simpson Strong-Tie, I worked for 10 years as a consulting structural engineer designing commercial, industrial, multi-family, mixed-use and retail projects. I was fortunate in those years to work at a great engineering firm that did a lot of everything. This allowed me to gain experience designing with wood, structural steel, concrete, concrete block and cold-formed steel as well as working on many seismic retrofits of historic unreinforced masonry buildings.