A New Way to See Whether FRP Is Right for Your Project

This week’s post was written by Griff Shapack, FRP Design Engineer at Simpson Strong-Tie. 

Specifying our Composite Strengthening Systems™ (CSS) is unlike choosing any other product we offer. In light of the unique variables involved with selecting and using fiber-reinforced polymer (FRP) solutions, we encourage you to leverage our expertise to help with your FRP strengthening designs. To get started, we first need to determine whether FRP is right for your project. The fastest way to do that is for you to fill out our Design Questionnaire. Our new Excel-based questionnaire collects your project information and helps you use the existing capacity check to evaluate whether or not FRP is suitable for your project per the requirements of ACI 562-16 Section 5.5.2. After the feasibility study, the questionnaire creates input sheets specifically for your project.

Getting Started

Step 1

Open the FRP Design Questionnaire spreadsheet using Microsoft Excel. If a yellow warning appears at the top of the sheet, click “Enable Content” to ensure that the workbook will function properly. You will start on the worksheet tab named “Main”. “Main” will be the only worksheet tab when you begin, but more worksheet tabs will be created as you use the spreadsheet.

Step 2

Enter the project information and your contact information in Section 1 of the worksheet. The contact information should be for the Designer that you would like Simpson Strong-Tie to work with for this project’s FRP design. See Figure 1.

Step 3

Enter the FRP strengthening information in Section 2 of the worksheet. If the application will require an existing capacity check, an input form requesting the information needed for the check will appear in Section 3 of the worksheet.

Figure 1. Project information and FRP strengthening information.

Step 4                                                                                                                        

For members that support gravity loads, an existing capacity check must be performed to verify that FRP strengthening is suitable before a design can be generated. For these members, the spreadsheet will generate a check table for you in Section 3 of the worksheet. Enter the number of members to be checked and the dead load (D), live load (L) and snow load (S) for each member. Use consistent units for the input. See Figure 2. The spreadsheet will calculate the demand-to-capacity ratio (DCR) for each member. The ratio must be less than or equal to 1.0.

  1. A result of “OK” means the existing capacity check is passed. Proceed to Step 5 below.
  2. A result of “NG” (no good) means the existing capacity check is failed and FRP strengthening is not likely to be suitable. However, consider contacting Simpson Strong-Tie about your design condition to ensure that this is the case.
Figure 2. Existing capacity check.

Step 5

You are now ready to create an element input worksheet for those members that passed the existing capacity check. Click “FRP Questionnaire” from the Excel menu bar. Then click the “Input Sheet” button in the ribbon bar. See Figure 3.

Figure 3. “Input Sheet” button.

This will create an element input worksheet as a new worksheet tab. See Figure 4.

Figure 4. Element input worksheet.

Enter the number of elements to be checked and fill in the design information for each member. The “No. of elements” cell features a drop-down menu with the numbers 1–5, but any number can be typed into the cell. (Each member should have passed the existing capacity check in Step 4.) See Figure 5.   

Figure 5. Element input worksheet.

Step 6

If you would like to add different member types that need to be strengthened, click “Another Type of Strengthening” button in the ribbon bar. See Figure 6. This will create a new “Main” worksheet. Repeat the steps above, until all strengthening types and member data have been entered.

Figure 6. “Another Type of Strengthening” button.

 Step 7

When you have finished inputting all required data, save the spreadsheet file and email it to css@strongtie.com. You should expect confirmation of receipt from us within one business day.

From there, if FRP is a viable option, you can decide to utilize our no-cost, no-obligation design services. Our team will design a unique solution specifying the most cost-effective CSS products that address your particular needs. The design calculations, drawings, notes and specifications are prepared by Simpson Strong-Tie Engineering Services and can then be incorporated into the design documents that you submit to the building official.

Don’t know which FRP solution is the right one for you? We do. Give our new Design Questionnaire a try, and let us be your partner during the project design phase. Our new Excel-based questionnaire collects your project information and helps you use the existing capacity check to evaluate whether or not FRP is suitable for your project per the requirements of ACI 562-16 Section 5.5.2 or AASHTO FRP Guide Spec Section 1.4.4. After the feasibility study, the questionnaire creates input sheets specifically for your project. For projects in Canada designed per the requirements of CSA S806 or CSA S6, please use our fillable PDF questionnaire to collect your information.

Learn more at strongtie.com/products/rps/css/frp-engineering-design.

Learn more: Webinar – Introducing Fabric-Reinforced Cementitious Matrix (FRCM)

In this free webinar we dive into some very important considerations including the latest industry standards, material properties and key governing limits when designing with FRCM.

Continuing education credits will be offered for this webinar.
Participants can earn one professional development hour (PDH) or 0.1 continuing education unit (CEU).

Paul McEntee

Author: Paul McEntee

A couple of years back we hosted a “Take your daughter or son to work day,” which was a great opportunity for our children to find out what their parents did. We had different activities for the kids to learn about careers and the importance of education in opening up career opportunities. People often ask me what I do for Simpson Strong-Tie and I sometimes laugh about how my son Ryan responded to a questionnaire he filled out that day:

Q.   What is your mom/dad's job?
A.   Goes and gets coffee and sits at his desk

Q.   What does your mom/dad actually do at work?
A.   Walks in the test lab and checks things

When I am not checking things in the lab or sitting at my desk drinking coffee, I manage Engineering Research and Development for Simpson Strong-Tie, focusing on new product development for connectors and lateral systems.

I graduated from the University of California at Berkeley and I am a licensed Civil and Structural Engineer in California. Prior to joining Simpson Strong-Tie, I worked for 10 years as a consulting structural engineer designing commercial, industrial, multi-family, mixed-use and retail projects. I was fortunate in those years to work at a great engineering firm that did a lot of everything. This allowed me to gain experience designing with wood, structural steel, concrete, concrete block and cold-formed steel as well as working on many seismic retrofits of historic unreinforced masonry buildings.