Do 50 Kip Wood Construction Connectors Exist?

The 2009 IBC Section 1604.4 states, “Load effects on structural members and their connections shall be determined by methods of structural analysis that take into account equilibrium, general stability, geometric compatibility and both short and long-term material properties.” This requirement applies to a 200 pound handrail connection as well as a 50,000 pound glulam connection.

Hanger installation at jobsite

50 kips is not a typical beam reaction in wood framed construction, but we’ve received some recent requests to design higher capacity hangers for use in wood podium decks for mixed-use structures. Although post-tensioned concrete is most commonly used for this application, the use of heavy timber for podium decks is driven by the benefits of wood: sustainability, saving construction time and money, architecturally attractive, long-term energy savings, light construction material, and performance in earthquakes.

To respond to these requests for higher capacity connections, and to answer the question posed in the title of this post, Simpson Strong-Tie has designed hangers to accommodate this growing trend in construction. Wood podium framing may consist of glulam beam sizes up to 10 ¾” x 48”  with service download and uplift reactions reaching up to 50 kips and 23 kips, respectively. This is due to large gravity loads and also seismic overturning loads on the shear walls.

Testing - Photo 1

Hanger design included a three-step process: 1) engineering calculations, 2) finite element analysis and 3) lab testing. The design used 3 gauge steel for strength and 1-inch thick steel bottom plate to limit seat deflection. We used SDS screws for the face fasteners for ease of installation and high-load capacities. The face fastener quantity was chosen to carry the full service loads, neglecting the contribution of the top flange bearing capacity. The initial design did not utilize fasteners in the top flange, as SDS screw heads would interfere with floor sheathing.

Testing - Photo 2

Finite element analysis (FEA) confirmed the hanger design performance and predicted high-stress areas, ultimate load and deflection. The analysis below shows a 78.7 kip allowable down load.



Testing - At failure

As good as calculations and FEA models can be, if you read this blog post, you know how much I love physical testing. No exception here, so these hangers were tested per ICC-ES AC13, Acceptance Criteria for Joist Hangers and Similar Devices. Physical testing helped us determine that hanger rotation at ultimate load created tension forces in the face fasteners, which reduced the vertical load capacity of the assembly. Turns out the top flange needed a good connection to the header to resist these rotation forces, so we added SDW screws since their low profile heads would not interfere with floor sheathing installation. With that modification, we retested the assembly and were able to hit the target loads.

What’s your take on this? Post a comment and let me know.

– Paul

Paul McEntee

Author: Paul McEntee

A couple of years back we hosted a “Take your daughter or son to work day,” which was a great opportunity for our children to find out what their parents did. We had different activities for the kids to learn about careers and the importance of education in opening up career opportunities. People often ask me what I do for Simpson Strong-Tie and I sometimes laugh about how my son Ryan responded to a questionnaire he filled out that day:

Q.   What is your mom/dad's job?
A.   Goes and gets coffee and sits at his desk

Q.   What does your mom/dad actually do at work?
A.   Walks in the test lab and checks things

When I am not checking things in the lab or sitting at my desk drinking coffee, I manage Engineering Research and Development for Simpson Strong-Tie, focusing on new product development for connectors and lateral systems.

I graduated from the University of California at Berkeley and I am a licensed Civil and Structural Engineer in California. Prior to joining Simpson Strong-Tie, I worked for 10 years as a consulting structural engineer designing commercial, industrial, multi-family, mixed-use and retail projects. I was fortunate in those years to work at a great engineering firm that did a lot of everything. This allowed me to gain experience designing with wood, structural steel, concrete, concrete block and cold-formed steel as well as working on many seismic retrofits of historic unreinforced masonry buildings.