Simpson Strong-Tie® Research and Testing Lab Grand Opening, WSU Pullman

On Thursday, May 5, 2016, Washington State University at Pullman, state dignitaries, construction leaders, WSU construction alumni, PACCAR management, Simpson Strong-Tie management and the press celebrated the grand opening and dedication of the PACCAR Environmental Technology Building (PETB) and the Simpson Strong-Tie Research and Testing Laboratory.

pullman1

The Simpson Strong-Tie team comprised senior leadership, engineering and marketing representatives, led by our CEO, Karen Colonias. In her speech at the opening ceremony, Karen Colonias highlighted the leadership of Simpson Strong-Tie in the engineering and construction materials industry in the U.S. and the world. She emphasized the longstanding partnership between WSU and Simpson Strong-Tie, which spans over twenty years of collaboration in various testing and code development programs, and communicated our excitement at the opportunity to collaborate more closely with WSU’s highly respected engineering department on testing and engineering programs.

Karen Colonias speaking at the Grand Opening

Karen Colonias speaking at the Grand Opening

The Paccar Environmental Technology Building (PETB) is 96,000 square feet and houses the Composite Materials and Engineering Center (CMEC) – a highly integrated hub of interdisciplinary research and education in the areas of renewable materials, sustainable design, water quality, and atmospheric research. The shared space in this new building will foster the synergy needed to find new solutions to complex industry problems, such as creating human environments that are at once safe, economical and resilient.

pullman3

The Simpson Strong-Tie® Research and Testing Lab at Washington State University (WSU) is a versatile laboratory designed specifically for the structural testing and prototyping of tall timber buildings, post frame buildings, concrete durability, building repair and retrofit and deck safety, as well as seismic and wind mitigation.

The lab includes a high-capacity reaction 28′ x 46′ concrete floor area with tie-downs, 75-kip capacity at two foot centers through the floor area; a high-capacity wall 28′ long by 2’thick by 18′ tall strong wall that is capable of withstanding a 200-kip reaction in any direction; a central 90-gallon-per-minute hydraulic pump, overhead crate and concrete mixing station. The laboratory is a dynamic space to test new material and design concepts developed in the PETB. This is one of the most visible spaces in the PETB and includes capabilities for mock-ups of new building systems, structural testing and advanced digital manufacturing. Adjoining the lab is an outdoor 32′ by 52′ reaction slab that allows for project display (e.g., Solar Decathlon competition), for developing taller and or larger structures than would be possible on the interior strong floor and for natural weather exposure testing.

pullman4

The lab is part of the Composite Materials and Engineering Center (CMEC), which has been a leader in the development of wood composite materials for more than 65 years. It is an International Code Council–accredited testing facility. The laboratory highlights engineered wood composites and is constructed of cross-laminated timber, glulam, Parallam and, of course, Simpson Strong-Tie® No- Equal connectors.

pullman5

Simpson Strong-Tie and WSU, as Karen Colonias mentioned in her speech, have a longstanding and productive partnership going back over 20 years. The two institutions have worked together in a number of areas, including new product testing, deck safety and seismic risk mitigation.

This year, Simpson Strong-Tie made a significant commitment and established the Simpson Strong-Tie Excellence Fund at the Voiland College of Engineering and Architecture at Washington State University (WSU). The fund provides an annual gift of $100,000 per year over the next eight years to support the new Simpson Strong-Tie® Research and Testing Lab in the PACCAR Environmental Technology Building (PETB). In addition to the lab, the Excellence Fund will support fellowships for professors and graduate students to present research findings, brainstorm about future research and conduct continuing education training.

The faculty of the Composite Materials and Engineering Center is committed to addressing the challenge of restoring and improving the U.S. civil infrastructure and offering an integrated approach linking material discovery, manufacturing innovation, product development, and customized design methodologies that will lead to high-performing, cost-effective solutions for the built environment. The core faculty possess diverse expertise that spans materials science (polymers, wood, cement, steel), durability and corrosion protection, manufacturing and sustainable design. The faculty also has a long history of involvement in developing building codes, standards and product acceptance criteria.

This year, the WSU Voiland College of Engineering and Architecture has more than 1,050 students enrolled in civil engineering, architecture and construction management programs. The alumni from these programs are founders of and senior executives in America’s top construction and design firms. The Wall Street Journal ranked WSU among the 25 universities whose graduates are top-rated by industry recruiters, and the Civil Engineering program is the 13th largest in the nation.

On October 29, 2016, and in line with this partnership, Simpson Strong-Tie is conducting its first annual engineering symposium at Washington State University Pullman. In this symposium, Simpson Strong-Tie engineers will share with the engineering and construction management students the various career opportunities that are available in the industry upon their graduation and introduce them to the exciting history of research and innovation at Simpson Strong-Tie. The Symposium will also include testing in the new lab of our No-Equal structural connectors and solutions.

At Simpson Strong-Tie, we are excited to be strengthening the partnership and increasing the collaboration with WSU faculty and students. We are looking forward to an extended and outstanding relationship that drives research and innovations and introduces new methods to design and construct safer, more resilient, sustainable and economical structures.

Onward and Upward!

Louay Shamroukh, P.E., S.E.

Engineering Manager, Northwestern U.S.

Coating Evaluation for Fasteners – Code-Approved and Alternative Coatings

Who likes red rust? No one I know! How do we avoid corroding of fasteners? Corrosion can be controlled or eliminated by providing a corrosion-resistant base metal or a protective finish or coating that is capable of withstanding the exposure environment. When fasteners get corroded, they not only look bad from outside but can also lose their load capacity. To ensure continued fastener performance, we have to control for corrosion. This blog focuses on evaluating the corrosion resistance of the fasteners.

What does the building code specify?

For use in preservative-treated wood, the IBC-2015 specifies fasteners that are hot-dipped galvanized, stainless steel, silicon bronze or copper. Section 2304.10.5.1 of IBC-2015 (Figure 1) covers fastener and connector requirements for preservative-treated wood (chemically treated wood). While chemically treated wood is part of the corrosion hazard, it is not the whole corrosion hazard. Weather exposure, airborne chemicals and other environmental conditions contribute to the corrosion hazard for metal hardware. In addition, the main issue with the code-referenced requirements for fasteners and connectors used with preservative-treated wood is that not all preservative treatments deliver the same corrosion hazard and not all fasteners can be hot-dip galvanized.

Figure 1: Section 2304.10.5.1 IBC-2015.

Figure 1: Section 2304.10.5.1 IBC-2015.

What if we want to use an alternative base material or coating for fasteners?

How do we evaluate the corrosion resistance of the alternative material or coating? The codes do not provide test methods to evaluate alternate materials and coatings. However, the International Code Council–Evaluation Service (ICC-ES) developed acceptance criteria to evaluate alternative coatings that are not code recognized for use in different environments. The purpose of acceptance criteria ICC-ES AC257, Acceptance Criteria for Corrosion-Resistant Fasteners and Evaluation of Corrosion Effects of Wood Treatment Chemicals, is twofold: (1) to establish requirements for evaluating the corrosion resistance of fasteners that are exposed to wood-treatment chemicals, weather and salt corrosion in coastal areas; and (2) to evaluate the corrosion effects of wood-treatment chemicals. In this blog post, we will concentrate on the evaluation of corrosion resistance of fasteners. The criteria provide a protocol to evaluate the corrosion resistance of fasteners where hot-dip galvanized fasteners serve as a performance benchmark. The fasteners evaluated by these criteria are nails or screws that are exposed directly to wood-treatment chemicals and that may be exposed to one or more corrosion accelerators like high humidity, elevated temperatures, high moisture or salt exposure.

The fasteners may be evaluated for any of the four exposure conditions:

  1. Exposure Condition 1 with high humidity. This test can be used to evaluate fasteners that could be exposed to high humidity. Typical applications that fall under this category are treated wood in dry-use applications.
  2. Exposure Condition 2 with untreated wood and salt water. This test can be used to evaluate fasteners that are above ground but exposed to coastal salt exposure.
  3. Exposure Condition 3 with chemically treated wood and moisture. This test covers all the general construction applications.
  4. Exposure Condition 4 with chemically treated wood and salt water. Typical applications include coastal construction applications.

Depending on the exposure condition being used for fastener evaluation, the fasteners are installed in wood that could be either chemically treated or untreated. Then the wood and the fasteners are placed in the chamber and artificially exposed to the evaluation environment. Two types of test procedures are to be completed for exposure condition 2 through 4. The purpose of these tests is not to predict the corrosion resistance of the coatings being evaluated, but to compare them to fasteners with the benchmark coating (ASTM A153, Class D) in side-by-side exposure to the accelerated corrosion environment.

ASTM B117 Continuous Salt-Spray Test

ASTM B117 is a continuous salt-spray test. For Exposure Condition 3, distilled water is used instead of salt water. The fasteners are continuously exposed to either moisture or salt spray in this test, and the test is run for about 1,440 hours after which the fasteners are evaluated for corrosion. This is an accelerated corrosion test that exposes the fasteners to a corrosive attack so the corrosion resistance of the coatings can be compared to a benchmark coating (hot-dip galvanized).

ASTM G85, Annex A5

The second test is ASTM G85, Annex A5 which is a cyclic test with alternate wet and dry cycles. The cycles are 1-hour dry-off and 1-hour fog alternatively. This is a cyclic accelerated corrosion test and relates more closely to real long-term exposure. This test is more representative of the actual environment than the continuous salt-spray test.  As in the ASTM B117 test, the fasteners along with the wood are exposed to 1,440 hours, after which the corrosion on the fasteners is evaluated and compared to fasteners with the benchmark coating.

Test Method and Evaluation

The test process involves installing 10 benchmark fasteners along with 10 fasteners for each alternative coating being evaluated. The fasteners are arranged in the wood with a spacing of 12 times the fastener diameter between the fasteners. A kerf cut is provided in the wood between the fasteners to isolate the fasteners as shown in Figure 2 and to ensure elevated moisture content in the wood surrounding the fastener shank. The moisture and retention levels of the wood are measured, and the fasteners are then installed in the chamber as shown in Figure 3 and exposed to the designated condition. The test is run for the period specified, after which the fasteners are removed, cleaned and compared to the benchmark for corrosion evaluation. Figure 4 shows the wood and fastener heads after 1,440 hours (60 days). The heads and shanks of the fasteners are visually graded for corrosion in accordance with ASTM D610. If the alternate coating performs equivalent to or better than the benchmark coating — that is, if the corrosion is no greater than in the benchmark — then the coating has passed the test and can be used as an alternative to the code-approved coating. Figure 5 shows the benchmark and alternative fasteners that are removed from the chamber after 1,440 hours.

As you can see, the alternative coatings have to go through extended and rigorous testing and evaluation as part of the approval process before being specified for any of the fasteners. Some alternative coatings provide even better corrosion resistance than the code recognized options. Sometimes, also, the thickness of these alternative coatings may be smaller than the thick coating required for hot-dip galvanized parts. Some of our coatings, such as the Double-Barrier coating, the Quik Guard® coating and the ASTM B695 Class 55 Mechanically Galvanized have gone through this rigorous testing and have been approved for use in preservative-treated wood in the AC257 Exposure Conditions 1 and 3. In addition, these coatings have been qualified for use with chemical retentions that are typical of AWPA Use Category 4A – General Ground Contact. No salt is found in AC257 Exposure Conditions 1 and 3. Please refer to our Fastener Systems Catalog, C-F-14, pages 13–15 for corrosion recommendations and pages 16–17 for additional information on coatings.

What do you look for specifically in a fastener? Do you have a preference for a certain coating type or color? Let us know in the comments below!

Figure 2: Fasteners with different coatings along with the benchmark, installed in wood and separated by kerf cuts.

Figure 2: Fasteners with different coatings along with the benchmark, installed in wood and separated by kerf cuts.

Figure 3: Fasteners and wood pieces installed in the chamber.

Figure 3: Fasteners and wood pieces installed in the chamber.

Figure 4: Snap shot of fasteners in ASTM B117 chamber after 1,440 hours.

Figure 4: Snap shot of fasteners in ASTM B117 chamber after 1,440 hours.

Figure 5: Fasteners after 1,440 hours of exposure, removed from the wood, cleaned and compared to benchmark. Coating 1 – Benchmark (Hot- dip Galvanized) and Coating 2 (Alternative coating).

Figure 5: Fasteners after 1,440 hours of exposure, removed from the wood, cleaned and compared to benchmark. Coating 1 – Benchmark (Hot- dip Galvanized) and Coating 2 (Alternative coating).

Fine Homebuilding Video Series: How to Build a Deck

We’re partnering with folks at Fine Homebuilding on a video series on how to build a deck that is code compliant and that highlights the critical connections of a deck. This series is called Ultimate Deck Build 2016. The video series comprises five videos that walk professionals through the recent code changes for the key connections of a deck.

The series features David Finkenbinder, P.E., a branch engineer for Simpson Strong-Tie who is passionate about deck codes and safety. He offers information on load resistance and the hardware that professionals can use at the crucial connections to make a deck code compliant. “This was a great opportunity to collaborate with the team at Fine Homebuilding, to communicate the connections on a typical residential deck and the role that they serve to develop a strong deck structure,” said David. “These same connections would also likely be common in similar details created by an Engineer, when designing a deck per the International Building Code (IBC).”

Screen Shot 2016-03-30 at 3.49.17 PM

The videos are being released every Wednesday during the month of March and feature the following deck connections:

  • Ledger Connection: This is the primary connection between a deck and a house. David tells the Fine Homebuilding team about various code- compliant options for attaching a deck ledger to a home.
  • Beam and Support Posts: David explains how connectors at this critical point can prevent uplift and resist lateral and downward forces. He also discusses footing sizes and post-installation anchor solutions.
  • Joists: This video reviews proper joist hanger installation and the benefits of installing hurricane ties between the joists and the beams. David goes into common joist hanger misinstallations, such as using the wrong fasteners or using a joist hanger at the end of a ledger.
  • Guardrail Posts: David reviews the different ways that you can attach a guardrail post so as to resist an outward horizontal load.
  • Stairs: David explains code-compliant options for attaching stringers to a deck frame.

Make sure to watch the series and let us know what you think. For more information, Fine Homebuilding has created an article titled “Critical Deck Connections.”

(Please note: this article is member-only/subscription content, so to read it you’ll need to either subscribe online or pick up the April/May issue of Fine Homebuilding.)

Screen Shot 2016-03-30 at 4.06.33 PM

Simpson Strong-Tie Now Offering a Structural Engineering/Architecture/Construction Management Student Scholarship Program

We know it’s tough going to school and majoring in structural engineering or architecture. You probably weren’t aware of this, but I went to Brooklyn Technical High School and we were required to take mechanical drafting, electrical engineering and wood/metal shop before we selected majors at the end of our sophomore year. I actively avoided majoring in architecture and engineering because, while I was a whiz at the lathe in metal shop, I was much less talented in some of the other engineering subjects.

draft1

Mechnical drafting class in Brooklyn Technical High School. (Photo courtesy of Brooklyn Technical High School)

I sometimes wish I had been better at them, because getting a degree in structural engineering and architecture isn’t just cool (where else can you get college credit or money to break stuff?), it can help you improve the lives of others and even make them safer. Simpson Strong-Tie Company, Inc. established the structural engineering/architecture scholarship program to assist architecture and structural engineering students by supporting their education and encourage them to design and build safer structures in their local communities.

And it seems as though there are more and more students committed to those goals, too. Last year, Simpson Strong-Tie awarded 49 scholarships of $2,000. The year before, Simpson Strong-Tie awarded 38 scholarships of $1,000. This year, Simpson Strong-Tie is offering up to 67 scholarship awards of $2,000 for the 2016/2017 academic school year. Applicants must be enrolled as juniors or seniors in full-time undergraduate study (60 semester hours or equivalent) majoring in architecture, structural engineering or construction management at the following colleges or universities for the entire upcoming academic year:

  • Arizona State University
  • Boise State University
  • Brigham Young University
  • California State Polytechnic University, Pomona
  • California State Polytechnic University, San Luis Obispo
  • California State University, Fresno
  • California State University, Fullerton
  • California State University, Long Beach
  • California State University, Sacramento
  • Clemson University
  • Florida International University
  • Georgia Institute of Technology
  • Iowa State University
  • Louisiana State University
  • Milwaukee School of Engineering
  • NYU Polytechnic School of Engineering
  • North Carolina State University
  • Ohio State University, Columbus
  • Oklahoma State University
  • Oregon Institute of Technology
  • Oregon State University
  • Penn State University Park
  • Portland State University
  • Purdue University, West Lafayette
  • Southern California Institute of Architecture
  • Texas Tech University
  • University of Arizona
  • University of California, Berkeley
  • University of California, Davis
  • University of California, Irvine
  • University of California, Los Angeles
  • University of California, San Diego
  • University of Cincinnati
  • University of Florida
  • University of Idaho
  • University of Illinois at Urbana-Champaign
  • University of Miami
  • University of Michigan
  • University of Nevada, Las Vegas
  • University of North Texas
  • University of Southern California
  • University of Texas, Arlington
  • University of Texas, Austin
  • University of Washington
  • University of Wyoming
  • Virginia Polytechnic Institute and State University
  • Washington State University

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The scholarship application will be available on the Simpson Strong-Tie website as of March 15, so if you know any students enrolled in a structural engineering, architecture or construction management major at the schools listed above, you should advise them about this wonderful opportunity. If you have any questions or comments, please let us know in the comments below.

Shrinkage Compensation Devices

Over the weekend, I had the pleasure of watching my daughter in her cheer competition. I was amazed at all the intricate detail they had to remember and practice. The entire team had to move in sync to create a routine filed with jumps, tumbles, flyers and kicks. This attention to detail reminded me of the new ratcheting take-up device (RTUD) that Simpson Strong-Tie has just developed to accommodate 5/8″ and ¾” diameter rods. The synchronized movement of the internal inserts allows the rod to move smoothly through the device as it ratchets. The new RTUDs are cost effective and allow unlimited movement to mitigate wood shrinkage in a multi-story wood- framed building. When designing such a building, the Designer needs to consider the effect of shrinkage and how to properly mitigate it.

Our SE blog post on Continuous Rod Restraint Systems for Multi-Story Wood Structures explained the importance of load path and  the effects of wood shrinkage. This week’s blog post will focus on the importance of mitigating the shrinkage that typically occurs in multi-story light-frame buildings.

Shrinkage is natural in a wood member. As moisture reaches its equilibrium in a built environment, the volume of a wood member decreases. The decrease in moisture causes a wood-framed building to shrink.

The IBC allows construction of light-framed buildings up to 5 and 6 stories in the United States and Canada respectively. Based on the type of floor framing system, the incremental shrinkage can be up to ¼” or more per floor. In a 5-story building, that can add up to 1-¼” or more and possibly double that when construction settlement is included.

rods1

Typical Example of gap forming between nut and plate when wood shrinkage at top level occurs without shrinkage device.

The Simpson Strong-Tie Wood Shrinkage Calculator is a perfect tool to determine the total shrinkage your building can experience.

Wood Shrinkage Calculator

Wood Shrinkage Calculator

In order to accommodate the shrinkage that occurs in a multi-story wood-framed building, Simpson Strong-Tie offers several shrinkage compensating devices. These devices have been tested per ICC-ES Acceptance Criteria 316 (AC316) and are listed under ICC-ES ESR-2320 (currently being updated for the new RTUD5, RTUD6, and ATUD9-3).

AC316 limits the rod elongation and device displacement to 0.2 inches between restraints in shearwalls. This deflection limit is to be used in calculating the total lateral drift of a light-framed wood shearwall.

rod3

3 Part Shearwall Drift Equation

The 0.2-inch allowable limit prescribed in AC316 is important to a shearwall’s structural ability to transfer the necessary lateral loads through the structure below to the foundation level. This limit assures that the structural integrity of the nails and sill plates used to transfer the lateral loads through the shearwalls is not compromised during a seismic or wind event. Testing has shown that sill plates can crack when excessive deformation is observed in a shearwalls. Nails have also been observed to pull out during testing.  Additional information on this can be found here.

rod4

Sill Plates Cracked due to excessive uplift at ends of shearwall.

rods5

Nails pull out due to excessive uplift at ends of shearwall.

In AC316, 3 types of devices are listed.

  • Compression-Controlled Shrinkage Compensating Device (CCSCD): This type of device is controlled by compression loading, where the rod passes uninterrupted through the device. Simpson Strong-Tie has several screw-type take-up devices, such as the Aluminum Take-Up Device (ATUD) and the Steel Take-Up Device (TUD), of this type.
rods6

ATUD (CCSCD)

  • Tension-Controlled Shrinkage Compensating Device (TCSCD): This type of device is controlled by tension loading, where the rod is attached or engaged by the device and allows the rod to ratchet through as the wood shrinks. The Simpson Strong-Tie Ratcheting Take-Up Device (RTUD) is of this type.

rod7

RTUD (TCSCD)

  • Tension-controlled Shrinkage Compensating Coupling Device (TCSCCD): This type of device is controlled by tension loading that connects rods or anchors together. The Simpson Strong-Tie Coupling Take-Up Device (CTUD) is of this type.
CTUD (TCSCCD)

CTUD (TCSCCD)

Each device type has unique features that are important in achieving the best performance for different conditions and loads. The following table is a summary of each device.

rods9The most cost-effective Simpson Strong-Tie shrinkage compensation device is the RTUD. This device has the smallest number of components and allows the rod unlimited travel through the device. It is ideal at the top level of a rod system run or where small rod diameters are used. Simpson Strong-Tie RTUDs can now accommodate 5/8″ (RTUD5) and ¾” (RTUD6) diameter rods.

How do you choose the best device for your projects? A Designer will have to consider the following during their design.

rod10

RTUD Assembly

Rod Tension (Overturning) Check:

  • Rods at each level designed to meet the cumulative overturning tension force per level
  • Standard and high-strength steel rods designed not to exceed tensile capacity as defined in AISC specification
    • Standard threaded rod based on 36 / 58 ksi (Fy/Fu)
    • High-strength Strong-Rod based on 92 / 120 ksi (Fy/Fu
    • H150 Strong-Rod based on 130 / 150 ksi (Fy/Fu)
  • Rod elongation (see below)

 Bearing Plate Check

  • Bearing plates designed to transfer incremental overturning force per level into the rod
  • Bearing stress on wood member limited in accordance with the NDS to provide proper bearing capacity and limit wood crushing
  • Bearing plate thickness has been sized to limit plate bending in order to provide full bearing on wood member

 Shrinkage Take-Up Device Check

  • Shrinkage take-up device is selected to accommodate estimated wood shrinkage to eliminate gaps in the system load path
  • Load capacity of the take-up device compared with incremental overturning force to ensure that load is transferred into rod
  • Shrinkage compensation device deflection is included in system displacement

 Movement/Deflection Check

  • System deformation is an integral design component impacting the selection of rods, bearing plates and shrinkage take-up devices
  • Rod elongation plus take-up device displacement is limited to a maximum of 0.2″ per level or as further limited by the requirements of the engineer or jurisdiction
  • Total system deformation reported for use in Δa term (total vertical elongation of wall anchorage system per NDS equation) when calculating shearwall deflection
  • Both seating increment (ΔR) and deflection at allowable load (ΔA) are included in the overall system movement. These are listed in the evaluation report ICC-ES ESR-2320 for take-up devices

 Optional Compression Post Design

  • Compression post design can be performed upon request along with the Strong-Rod System
  • Compression post design limited to buckling or bearing perpendicular to grain on wood plate
  • Anchorage design tools are available
  • Anchorage design information conforms to AC 318 anchorage provisions and Simpson Strong-Tie testing

In order to properly design a continuous rod tie-down system for your shearwall overturning restraint, all of the factors listed above will need to be taken into consideration.

A Designer can also contact Simpson Strong-Tie by going to www.strongtie.com/srs and filling out the online “Contact Us” page to have Simpson Strong-Tie design the continuous rod tie-down system for you. This design service does not cost you a dime. A few items will be required from the Designer in order for Simpson Strong-Tie to create a cost-effective rod run (it is recommended that on the Designer specify these in the construction documents):

  • There is a maximum system displacement of 0.2″ per level, which includes rod elongation and shrinkage compensation device deflection. Some jurisdictions may impose a smaller deflection limit.
  • Bearing plates and shrinkage compensation devices are required at every level.
  • Cumulative and incremental forces must be listed at each level in Allowable Stress Design (ASD) force levels.
  • Construction documents must include drawings and calculations proving that design requirements have been met. These drawings and calculations should be submitted to the Designer for review and the Authority Having Jurisdiction for approval.

More information can be obtained from our website at www.strongtie.com/srs, where a new design guide for the U.S., F-L-SRS15, and a new catalog for Canada, C-L-SRSCAN16, are available for download.

rod11

US Design Guide F-L-SRS15 and Canadian Catalog C-L-SRSCAN16

Fiber Reinforced Polymer (FRP) Design Example

The following FRP Design example walks the reader through the typical process for designing an FRP strengthening solution for a concrete T-beam per ACI 440.2R Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures.

One of the most important initial checks for an Engineer of Record is to confirm that the unstrengthened structure can support the load combination shown in Equation 5.5.1 in ACI 562 Code Requirements for Evaluation, Repair, and Rehabilitation of Concrete Buildings:

Eq. 5.5.1: (φRn)existing ≥ (1.2SDL + 0.5SLL)new

This check is to prevent a structural failure in case that the strengthening is damaged in an extraordinary event. If the structural element cannot pass this check, then external reinforcement is not recommended.

We have a Design Questionnaire where we ask Engineers of Record for more specific information related to the element to be strengthened:

doc1clone1

For this particular example, the following information was provided for the concrete T-beam.

1.  Structure Type (e.g., building, bridge, pier, garage):

  • 5-story commercial concrete building

2. Element(s) to be Strengthened/Repaired (e.g., beam, column, slab, wall):

  • Reinforced concrete beams

3. Type of Deficiency (e.g., shear, flexural, axial):

  • Flexural

4. Existing Factored Capacity of Section (e.g., kips, kip-ft):

  • 265 kip-ft

5. Ultimate Demand to be Supported (e.g., kips, kip-ft):

  • 320 kip-ft

6. Existing Concrete Compressive Strength:

  • 4,000 psi

7. Existing Rebar Yield Strength:

  • 60 ksi

8. Existing Reinforcement Layout:

  • 3 #7s 2.6875 inches from bottom of web to centroid of steel

9. Existing Dimensions:

  • 36 inches total beam height, 8 inches slab, 24 inches web width, 120 inches effective slab width

10. Relevant Existing Drawing Sheets and/or Pictures:

  • See attached

11. Finish Coating Requirements/Preferences:

  • None

12. For Flexural Strengthening:

  1. Dead Load Moment Applied at Time of Installation
    1. 60 kip-ft
  2. Service Dead Load Moment After Installation
    1. 80 kip-ft
  3. Service Live Load Moment After Installation
    1. 140 kip-ft

We then plug this information into our design program to come up with an FRP solution that meets the needs of the member:

masterdoc

For a beam that was at 83% of the capacity required for the new loading, we specified a simple, low-impact FRP solution to maintain clearances under the beams. If a traditional fix of adding cross-section to the beam had been specified instead, then additional concrete and rebar would need to be added to the beam, which would impact clearances under the beam and also increase the seismic weight of the building. The additional weight could also translate all the way through the building and even impact footing designs.

FRP can be used to increase the flexural strength up to 40% per ACI 440.

For your next retrofit project, please contact Simpson Strong-Tie to see if FRP would be an economical choice for strengthening your concrete or masonry element.

Specifying Self-Drilling Screws: “Standard” vs. “Engineered”

In my past life as a Design Engineer, when specifying a screw the size of the screw was the key feature that I considered. In my mind, a #10 screw performed better than #8, and a #12 was better than #10 and all #10 screws were the same. But that is not always true. Just as a shoe size or a dress size may not be exactly the same for all brands, a screw of the same size from different manufacturers may perform differently. The head type, head design, thread design (fine, coarse, thread angle, pitch), thread type (like box threads, buttress threads, unified, square) and drill point type (like #1, #3, #5 drill point) can influence the performance of a screw. When innovatively designed, a #10 engineered screw can meet or exceed the performance of a #12 or #14 screw in loads and drill time and could result in cost savings. You can use fewer screws, which would mean labor savings. For example, our newly designed XU34B1016 screw, which is a #10 screw with 16 threads per inch, a hex washer head and a #1 drill point, that performs better than a #14 standard screw in lighter gauge steels.

screws1

What Are Self-Drilling Tapping Screws?

Self-drilling tapping screws, or self-drilling screws, as the name implies, drill their own hole, eliminating the need for predrilling, and form or cut internal mating threads.  They are  relatively fast to  instal compared to bolts or welds. Unlike pins, they do not require a thick support material to be used. They can be used in very thin steel, such as 26 gauge, up to steel that is ½” thick. Self-drilling screws may be a perfect choice for most applications involving cold-formed steel (CFS). They are most commonly used for CFS connections: either attaching CFS to CFS, wood to CFS or CFS to wood. They are a logical choice when the other side of the connection or material is not accessible.

Most self-drilling screws are made of steel wire that meets the specification of ASTM A510 minimum grade 1018 material as specified in ASTM C1513 standard. Self-drilling screws are heat treated  to case harden then so that they meet the hardness, ductility, torsional strength and drill drive requirements as specified in ASTM C1513 standard.  ASTM C1513 refers to SAE J78 for the dimensional and performance requirements of self-drilling screws.

Screw Selection

While selecting the screw, you need to figure out the head type that works for the application. For example, a flat-head screw would be a good choice for wood-to-steel applications, but for steel-to-steel applications, a hex head or a pan head may be a better choice. Similarly, the length of the screw should be sufficient to fasten  the members of the connection together. According to Section D1.3 of AISI S200, the screw should be at least equal in length to the total thickness of the material including gaps with a minimum of three exposed threads. The length of the drill point is another important feature to consider. It should be long enough to drill through the entire thickness of the material before engaging the threads. This is because thread forming occurs with fewer revolutions than  the drilling process.   if the drill point length is not long enough, the screw threads can engage the connection material and the screw can bind and break.

screws2

Some drill points also have “wings” to  drill a hole in the material that is larger in diameter than the threaded shank. Screws with this kind of point are mainly used for wood-to-steel applications. The blog post by Jeff Ellis titled “Wings or No Wings” provides some useful insights for screws with wings when used in shearwall applications.

The Test Standards and Evaluation Criteria for Standard and Engineered Screws

Per Section D1 of AISI S200, screws used for steel-to-steel connections or sheathing-to-steel connections shall be in compliance with ASTM C1513 or an approved design or design standard.

For ASTM C1513–compliant screws (per AISI S100), Section E4 provides equations to calculate shear, pullout and pullover of screws used in steel-to-steel connections. It also provides safety and resistance factors for calculating allowable strength or design strength. These equations are based on the results of tests done worldwide and the many different types of screws used in the tests. As a result, these equations seem to have a great degree of conservatism.

As discussed earlier, many factors, such as the head type and washer diameter, thread profile, drill point type and length, installation torque and the installation method affect or influence the performance of a screw. In order to qualify the screws as ASTM C1513–compliant or better performing, manufacturers need to have their screws evaluated per Acceptance criteria for Tapping Screw Fasteners AC118 developed by International Code Council – Evaluation Service. The criteria have different requirements depending on whether the intention is to qualify as standard screws or proprietary screws.  For proprietary screws, connection shear, pullout and pullover tests are performed in accordance with the AISI S905 test method. The shear strength and tensile strength of the screw itself are evaluated per test standard AISI S904. The safety and resistance factors are calculated in accordance with Section F of AISI S100. The pictures below are some test set-ups per AISI S905 and AISI S904 test procedures.

screws3 screws4 screws5

Another important consideration is corrosion resistance. AC118 has a requirement for testing the fasteners for corrosion resistance in accordance with ASTM B117 for a minimum of 12 hours. The screws tested shall not show any white rust after 3 hours or any red rust after 12 hours of the test. At the same time, it is important to keep in mind  that  hardened screws are prone to hydrogen embrittlement and are not recommended for exterior or wet condition applications. Also, these screws are  not recommended for use with dissimilar metals.  If self-drilling screws are to be used in exterior environments, the screws need to be selectively heat treated to keep the core and surface hardness in a range that  reduces the susceptibility to hydrogen embrittlement. Other fastener options for exterior environments are stainless-steel screws.

This table shows are some of our screw offerings for CFS applications. Our stainless-screw options can be found in  Fastening Systems Catalog (C-F-14) or at www.strongtie.com.

screw6a

What are the screws that you most commonly specify? Share your screw preferences and your ideas on self-drilling screws in your comments below.

Don’t Buckle at the Knees: RCKW Testing

hienprofileThis week’s post comes from Hien Nguyen, one of our R&D engineers at the Simpson Strong-Tie Home Office in Pleasanton, CA. Hien has worked in new product development for 17 years on a variety of products. While she still does a few connector projects for wood, her skills and passion for cold-formed steel construction have allowed her to become our expert in CFS product development. Before joining Simpson Strong-Tie, Hien worked as a consulting engineer doing building design. She has a bachelor of science in Civil Engineering from UC Davis, and is a California Licensed Civil Engineer. Here is Hien’s post:

A previous blog post described how Simpson Strong-Tie tests and loadrates connectors used with cold-formed steel structural members per acceptance criteria ICC-ES AC261.

This week, I would like to describe how we test and determine engineering design values for RCKW, Rigid Connector Kneewall, in a CFS wall assembly and how the data can help designers perform engineering calculations accurately and efficiently.

The RCKW was developed to provide optimal rotational resistance at the base of exterior kneewalls, parapets, handrail and guardrail systems as well as interior partial-height walls.

RCKW connectors were tested in CFS wall assemblies for 33 mil, 43 mil, and 54 mil steel thicknesses and in stud members with depths from 3½ to 8 inches. RCKW connectors with stiffeners, RCKWS, were also tested in CFS wall assemblies for 43 mil, 54 mil, and 68 mil stud thicknesses.

rckw1

The wall assembly is built using CFS stud framing, bottom and top tracks simulating the kneewall application in the field. The RCKW connectors are fastened to a stud using self-drilling screws and an anchor to the test bed foundation. The horizontal load (P) is applied to the CFS wall assembly at a height (hwall) of 38 inches. The instruments are also placed at the same height as the applied load to measure wall deflection.  The load and deflection data are recorded concurrently until the wall assembly fails.

The allowable moment, MASD, is determined by multiplying PASD, the allowable horizontal load, by hwall, wall height (MASD = PASD * hwall).

PASD is calculated from peak load or nominal load, PNominal, divided by Ω, a safety factor per AISI 100 Chapter F. The blog post on Cold-Formed Steel Connectors discusses safety factors for CFS testing.

Similarly, the allowable rotational angle, θASD, is also determined by wall deflection at allowable load, ∆ASD, divided by hwallASD = ∆ASD /  hwall).

So the assembly rotational stiffness, β, is calculated by MASD, divided by θASD (β = MASD / θASD).

The typical test performance curve for moment versus rotational angle is concave down and increasing as shown in the blue color curve. As a result, the rotational stiffness for RCKW is established by the secant stiffness, which is a red color straight line from zero to the allowable moment as shown below.

rckw2

The rotational stiffness captures connector deflection, stud deflection and fastener slip in various stud thicknesses. Whereas when the connectors are tested in a steel jig fixture, the rotational stiffness includes connector deflection only and not the fastener and stud deflection behaviors. The photos below are examples of member failures which include stud buckling, bottom track tearing, and screws tilting and bearing. These failure modes are reflected in our tabulated loads because of our assembly testing.

rckw34

Designers might wonder why the rotational stiffness is so important and how significant it is in Engineering Design. The IBC 2012 Building Code, Section 1604.3 indicates that structural systems and members shall be designed to have adequate stiffness to limit deflections and lateral drift. Table 1604.3 also provides deflection limits for various construction applications to which the Engineer must adhere.

For example, one of many common applications in CFS construction is the exterior kneewall system below a large window opening subject to the lateral pressure load. This kneewall system must not only be designed to provide moment strength to avoid the hinging failure at the base, but it must also be designed for deflection limits to prevent excess lateral drift that could result in cracking from various types of finish materials.

Since we performed comprehensive testing of full assemblies, engineers do not need to add stud deflection and fastener slip to the calculation. This saves time and eliminates guesswork with their specifications in a common 38 inch kneewall height.

Furthermore, we analyzed the test data to determine connector rotational stiffness, βc, which includes connector deflection, fastener slips, but not the stud deflection.  Connector rotational stiffness allows engineers to perform deflection calculations for assemblies of any height.  Design examples are available in the RCKW Kneewall Connectors flier.

Simpson Strong-Tie recognizes the complexity of performing hand calculations to accurately determine the anchorage reactions for the RCKW connectors. This post on Statics and Testing described how we established loads for our CFS SJC products through testing. We have also provided anchor reaction loads for connectors at allowable moments so engineers could skip this step in the calculations. We measure the anchor reactions by connecting the calibrated blue load cells with the threaded rod that anchors the RCKW connector. The load cell measures the tension forces in the rod directly.

rckw5

Connector strength and stiffness are critical for RCKW products where calculation or interpolation cannot capture the true performance accuracy the same way that testing would. For this reason, we have tabulated values for various stud member depths and thicknesses. Like Paul, I am amazed at the number of tests that go into this product. Ultimately, we can provide complete Engineer Design values that our specifiers can trust in determining adequate strength and stiffness to meet the code requirement.

 

Concrete Anchor Design for the International Building Code: Part 3

Specification of Concrete Anchors
The 2012 IBC and its Referenced Standard, ACI 318-11, is the first to mandate that contract documents specifically address installation, inspections and design parameters of concrete anchorage. For this reason, the specification of anchors in drawing details alone is impractical. To fully and effectively address these code mandates, concrete anchorage is more practically specified in both drawing detail(s) and the General
Structural Notes or specifications of the contract documents. The drawing detail(s) would typically call out the anchor type, material specification, diameter, and embedment depth. The General Structural Notes or specifications would include the name of the qualified anchor(s) and address the installation, inspections and design parameter requirements of ACI 318-11.


The following sections of ACI 318-11 discuss the contract document requirements for concrete anchorage:

cadp3.1

The commentary in ACI 318-11, RD.9.1 discusses the sensitivity of anchor performance to proper installation. It emphasizes the importance of qualified installers for all anchors, and compliance with the Manufacturer’s Printed Installation Instructions (MPII) for post-installed anchors. Training is required for adhesive anchor installers per ACI 318-11 D.9.1. Simpson Strong-Tie Co. Inc. provides free installer training by experienced Technical Sales Representatives for our adhesive, mechanical and specialty anchors. Contact us at 1-800-999-5099. Special inspection and proof loading are addressed in ACI 318-11 D.9.2
and D.9.2.1.

cadp3.2

Per the section above, anchor installation requires inspection per Section D.9.2. In addition, the design parameters for adhesive anchors are required to be specified in the contract documents. An explanation of the design parameters listed in ACI 318-11 D.9.2.1 is provided below:

  1. Proof loading where required in accordance with ACI 355.4. Proof loading is only required for adhesive anchors loaded in tension in which the inspection level chosen for the adhesive anchor design is “Continuous” (Ref. ACI 355.4 Section 10.4.6). Selecting “Continuous Inspection” can result in a higher “Anchor Category,” which in turn results in a higher strength reduction factor, φ. Reference Section 13.3.4 of ACI 355.4 for the minimum requirements of the proof loading program, where required. The Design Professional is responsible for performing the quantity, the duration of
    the applied load, and the proof load to which the anchors will be tested. These parameters will be specific to the anchor design conditions.
  2. Minimum age of concrete at time of anchor installation. Per ACI 318 D.2.2, adhesive anchors must be installed in concrete having a minimum age of 21 days at time of anchor installation. Simpson Strong-Tie® has performed in-house testing of SET-XP®, AT-XP®, and ET-HP® adhesive anchors installed in 7-day- and 14-day-old concrete. The results of testing are published in an engineering letter (L-A-ADHGRNCON15.pdf), which can be viewed and downloaded at www.strongtie.com.
  3. Concrete temperature range. This is the in-service temperature of the concrete into which the adhesive anchor is installed. Temperature Ranges are categorized as 1, 2 or 3. Some manufacturers use A, B, or C as the category designations. Each Temperature Range category has a maximum short-term concrete temperature and a maximum long-term concrete temperature. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term concrete temperatures are constant temperatures over a significant time period.
  4. Moisture condition of concrete at time of installation. Moisture conditions, as designated by ACI 355.4, are “dry,” or “water-saturated.” Moisture condition impacts the characteristic bond stress of an adhesive.
  5. Type of lightweight concrete, if applicable.
  6. Requirements for hole drilling and preparation. These requirements are specific to the adhesive, and are described in the Manufacturer’s Printed Installation Instructions (MPII). Reference to the MPII in the contract documents is sufficient.

 

Adhesive anchors installed in a horizontal or upwardly inclined orientation that resist sustained tension loads require a “certified” installer.

cadp3.3

cadp3.4

A certification program has been established by ACI/CRSI. Installers can obtain certification by successful completion of this program. Contact your local ACI or CRSI chapter for more information. Other means of certification are permitted, and are the responsibility of the licensed design professional.

The installation of adhesive anchors in a horizontal or upwardly inclined orientation presents unique challenges to the installer. Simply put, the effects of gravity for these applications make it difficult to prevent air bubbles and voids, which can limit full adhesive coverage of the insert (threaded rod or reinforcing bar). Due to the increased installation difficulty of these anchors, they are required to be continuously inspected by a certified special inspector.

cadp3.5

Suggested General Structural Notes or specifications for post-installed anchors can be viewed and downloaded at here, or contact a Simpson Strong-Tie® representative for help with your post-installed General Structural Notes or specifications.

Simpson Strong-Tie Suggested General Note for Anchor Products

Post-Installed Anchors into Concrete, Masonry and
Steel and Cast-in-Place Anchors into Concrete

The below products are the design basis for this project. Substitution requests for products other than those listed below may be submitted by the contractor to the Engineer-of-Record (EOR) for review. Substitutions will only be considered for products having a code Report recognizing the product for the appropriate application and project building code. Substitution requests shall include calculations that demonstrate the substituted product is capable of achieving the equivalent performance values of the
design basis product. Contractor shall contact manufacturer’s representative (800-999-5099) for product installation training and a letter shall be submitted to the EOR indicating training has taken place. Refer to the building code and/or evaluation report for special inspections and proof load requirements.

  1. For anchoring into cracked and uncracked concrete

a) Mechanical anchors shall have been tested in accordance with ACI 355.2 and/or ICC-ES AC193 for cracked concrete and seismic applications. Pre-approved products include:
i. Simpson Strong-Tie® Strong-Bolt® 2 (ICC-ES ESR-3037)
ii. Simpson Strong-Tie® Titen HD® (ICC-ES ESR-2713)
iii. Simpson Strong-Tie® Torq-Cut® (ICC-ES ESR-2705)
iv. Simpson Strong-Tie® Titen HD® Rod Hanger (ICC-ES ESR-2713)
v. Simpson Strong-Tie® Blue Banger Hanger® (ICC-ES ESR-3707, except roof deck insert)

b) Adhesive anchors shall have been tested in accordance with ACI 355.4 and/or ICC-ES
AC308 for cracked concrete and seismic applications. Adhesive anchors shall be installed
by a certified adhesive anchor installer where designated on the contract documents.
Pre-approved products include:
i. Simpson Strong-Tie® AT-XP® (IAPMO-UES ER-263)
ii. Simpson Strong-Tie® SET-XP® (ICC-ES ESR-2508)
III. Simpson Strong-Tie® ET-HP® (ICC-ES ESR-3372)

cadp3.6

Concrete Anchor Design for the International Building Code: Part 2

Designing “Alternative Materials”
Concrete anchor types whose designs are not addressed in the IBC or its Referenced Standards, or are specifically excluded from the scope of the Referenced Standard (ACI 318-11), may be recognized as Alternative Materials. Section 1909 of the 2012 IBC requires that “The strength design of anchors that are not within the scope of Appendix D of ACI 318, shall be in accordance with an approved procedure.” Section D.2.2 of ACI 318-11 lists some concrete anchor types that are considered “Alternative Materials” and specifically excludes these anchors from its scope. The list of “Alternative Material” anchors provided in this section is not, however, a comprehensive list.

Section 104.11 of the 2012 IBC describes how the design professional must approach the design of Alternative Materials.

cadp2.1

Section 104.11 provides the design professional with two options for the substantiation of the acceptable performance of an Alternative Material:

a.
Research Reports. As described in the previous section (Design of Code Anchors), Research Reports are referenced as the primary source for the design and qualification of Alternative Materials. Research Reports for anchors are published by IAPMO UES or ICC-ES, both ANSI ISO 17065 accredited agencies. Publicly developed, majority-approved acceptance criteria are used to establish the test program and minimum performance requirements for an anchor type. Some Alternative Material anchor types have established acceptance criteria to which a product can be evaluated:

  • Screw Anchors in Concrete (such as Simpson Strong-Tie® Titen HD®): ICC-ES AC193
  • Headed Cast-in Specialty Inserts (such as Simpson Strong-Tie® Blue Banger Hanger®): ICC-ES AC446
  • Powder- or Gas-Actuated Fasteners (such as Simpson Strong-Tie® PDPA and GDP): ICC-ES AC70

If Research Reports are used to substantiate an anchor’s performance, the design professional is bound by the design methodology and product limitations described in the Research Report.

b.
Tests. If a Research Report is not available, and no acceptance criteria exists for a given anchor type, IBC Section 104.11 permits the use of tests performed in accordance with “recognized and accepted test methods” by an “approved agency” to substantiate performance. One example of an anchor type for which no acceptance criteria exists is:

  • Helical Wall Ties (such as Simpson Strong-Tie® Heli-Tie™)

Cracked Concrete Determination
One of the many design considerations that the design professional must determine when designing either “Code Anchors” or anchors qualified as “Alternative Materials” is whether to consider the state of the concrete “cracked” or “uncracked.” The concrete state can significantly influence the anchor’s capacity. Neither the IBC nor ACI 318, Appendix D explicitly defines which applications should be categorized as “cracked” or “uncracked” concrete. The design professional must determine by analysis whether cracking will occur in the region of the concrete member where the anchors are installed. Absent an analysis to determine whether cracking will occur, the design professional may conservatively assume that the concrete state is “cracked.” With that said, there are two circumstances that require the design professional to design for “cracked” concrete:

a) Anchors in structures assigned to Seismic Design Categories C, D, E, or F (per 2012 IBC, Chapter 16) are required to be designed for “cracked” concrete unless the design professional can demonstrate that cracking does not occur at the anchor locations. The prequalification requirements of ACI 355.2 for mechanical anchors and ACI 355.4 for adhesive anchors include a test program that evaluates the performance of anchors in cracked concrete. Only anchors that have been tested and have passed the cracked concrete test program qualify for use in “cracked” concrete. The Research Report for a post-installed anchor (mechanical or adhesive) will clearly indicate whether it qualifies for use in “cracked concrete.”
b) Anchors located in a region of the concrete element where analysis indicates cracking at service level loading must be designed for “cracked” concrete (e.g. fr ≥ 7.5λ√f’c, ACI 318-11 eq. 9-10).

The design professional must consider additional factors that have the potential to result in concrete cracking in the region of anchorage. These factors include restrained shrinkage, temperature changes, soil pressure, and differential settlement. If no cracking is assumed in the region of the anchorage, the design professional should be able to justify that assumption.

Design Calculations

The design methodology in ACI 318 Appendix D is cumbersome. Calculations can be performed by hand using the design equations in Appendix D, inserting the substantiated data from an anchor manufacturer’s data tables or Research Reports to design with post-installed anchors. Designing with cast-in-place “Code Anchors” does not require additional data beyond what is included in ACI 318, Appendix D since these are “standard” anchors with standard design characteristics.

Performing hand calculations can be time-consuming, and for most design professionals is impractical due to the complexity of the design equations associated with multiple failure modes required to be considered. Design software, such as Simpson Strong-Tie® Anchor Designer™ Software for ACI 318, ETAG and CSA provides a fast, reliable method of calculating anchor performance for both cast-in-place and post-installed anchors. This software designs both “Code Anchors” and “Alternative Materials” for which an acceptance criteria exists.

Simpson Strong-Tie® Anchor Designer™ Software for ACI 318, ETAG and CSA is free and can be downloaded here.

cadp2.2