Structural engineers for the Rose Avenue Elementary School project in Oxnard, California, a high seismic zone, chose to switch from special moment frames requiring welded connections to the Simpson Strong-Tie Yield-Link moment connection, which features bolted connections instead of onsite welding. This case study shares the experiences of structural engineers, fabricators and other project partners utilizing this innovative solution for structural steel construction.
Tag: yield-link
Spotlighting Our Yield-Link® Moment Connection: Three Project Cases
Our Yield-Link connection is precision-made to meet the tough demands and increased loads of structural steel construction. From building owners to engineers, to contractors and fabricators, the Yield-Link’s state-of-the-art design saves everyone time and money — while providing a connection that keeps structural steel buildings strong and safe.
Yield-Link® Moment Connections in the Great White North
Resiliency is a term which is becoming more commonplace within the field of structural engineering, not just in North America but worldwide. As part of a nation that prides itself on being progressive, engineers in seismic zones of Canada are already exploring innovative solutions that may help create economic structures with resiliency in mind. But what do we mean by resiliency?
In the fields of engineering and construction, resiliency is the ability of a structure to absorb or avoid damage without suffering complete failure. Structural resiliency is the ability of a building or structure to remain sufficiently sound and intact following a shock event as to allow rapid resumption of normal use.
No Surprises: Rule Steel Speeds Detailing and Fabrication for Oregon Events Center with Yield-Link® Technology
Massive amounts of timber. Tons of structural steel. Envisioned as the centerpiece of a revitalized fairgrounds complex in Washington County, Oregon, the Wingspan Conference And Event Center due to open in summer 2020 includes a high-tech 39,000-square-foot expo hall with 30ʹ ceilings, a rooftop solar array, a 13,000-square-foot conference center to accommodate trade shows, corporate meetings, and seminars, and a materials list of building products to rival any commercial or civic construction project.
Get Plugged Into Structural Steel Designs With Yield-Link Plugin Tools
With the introduction of the Simpson Strong-Tie Yield-Link® moment connection for steel construction, the engineering and software development teams at Simpson Strong-Tie created multiple design tools to support users in their specification of the Yield-Link technology. These tools range from a connection modeling guide and plugins for designers to detailing software add-ins for detailers. Below is a brief introduction to these tools for the different trades.
Questions Answered: Yield-Link® Connection for Steel Construction
In this post, we follow up on our May 2 webinar, Seismic Resilience and Risk Assessment of the Yield-Link® Connection for Steel Construction, by answering some of the interesting questions raised by the attendees.
During the webinar, we discussed how to achieve seismic resiliency in steel construction with our Yield-Link connection for steel special moment frames and the Seismic Performance Prediction Program (SP3) by Haselton Baker Risk Group. In case you weren’t able to join our discussion, you can watch the on-demand webinar and earn PDHs and CEUs here.
As with our previous webinars, we ended with a Q&A session for the attendees. Jeff Ellis, our Director of Codes and Compliance, and Curt Haselton and Jared Debock, from Haselton Baker Risk Group, answered as many questions as they could in the time allowed. Now we are back to recap some of the more commonly asked questions and their answers. If you’re interested in seeing the full list of questions, click here.
Continue Reading
Questions Answered: Strong-Wall® Site-Built Portal Frame System
In this post, we follow up on our April 17 webinar, Meeting Braced-Wall Requirements: A New Portal Frame Solution, by answering some of the interesting questions raised by attendees.
During the webinar, we discussed how the Strong-Wall site-built portal frame system (PFS) provides designers, builders and contractors in prescriptive jurisdictions with a new alternative to IRC wall-bracing methods. In case you weren’t able to join our discussion, you can watch the on-demand webinar and earn PDHs and CEUs here.
Continue Reading
Webinar: Resilient Design with Steel Frames
This blog was co-written for the webinar by Curt Haselton, Ph.D., P.E., Founder and CEO Haselton Baker Risk Group and Jeff Ellis, P.E., S.E., SECB, Director of Codes and Compliance at Simpson Strong-Tie.
Continue Reading
NASCC 2018: Debuting Our Newest Yield Link Connection
This year the NASCC (North American Steel Construction Conference) will be in Baltimore, Maryland. The conference is the annual educational and networking event for the structural steel industry, which attracts attendees and exhibitors from all over the world. With more than 130 sessions this year, the conference will provide attendees the opportunity to learn the latest in research, design, technology and best practice in the steel industry.
Continue Reading
The New Way to Connect with Strong Frame®
The April SE blog article, What Makes Strong Frame® Special Moment Frames So Special, explained the features and benefits of the Yield-Link® structural fuse design for the Strong Frame® special moment frame (SMF) connection. In this blog, I will be introducing the Yield-Link end-plate link (EPL) to the Strong Frame connection family.
What is the EPL?
The EPL connection (Figure 1) is the latest addition to the Strong Frame Strong Moment Frame (SMF) solution. The new EPL connection can accommodate a W8X beam which is approximately a 33% reduction in beam depth from a W12X beam. The frame is field bolted without the need for field welding which means a faster installation. The snug-tight bolt installation requirement means no special tools are required. The EPL SMF connection has the same benefit of not requiring any additional beam bracing as the T-Stub connection. The frame can be repaired after a large earthquake by replacing the Yield-Link connection. Since the shear tab bolts will be factory installed, installation time for the frame is reduced by 25% making the EPL connection one of the most straightforward connections to assemble.

Why Did We Develop the EPL?
The development of the EPL came from strong interest and numerous requests to offer a solution with more head room for clearance of retrofit projects or enhancement for new construction using a shallower beam profile. The original T-stub link design has the shear tab welded to the column flange. The geometry of the shear tab meant that a W12X beam is required to accommodate the Yield-Link Flange. In Figure 2, you can see that a shallower beam profile will bring the Yield-Link flange closer to each other and limit the attachment of the shear tab. A new connection was needed.


How Did We Develop the EPL?
Multiple configurations were studied, including a notched flange plate with 3 bolts (Figure 3) to avoid interference with the shear tab connection to the column. In the end, a compact end plate link combining the shear tab and Yield-Link stem in a single connection was the final design. However, many questions loomed over the prototype. How will the single end plate design perform in a full scale test? Will the new configuration change the limit state? These questions needed to be studied prior to launching an expensive full-scale test program with multiple samples and configurations. Numerous Finite Element Analysis (FEA) models were studied and refined prior to full scale testing of a prototype. Modeling included ensuring the stem performs as a fuse (Figure 4) as discussed in the April blog and the integrity of the shear tab is maintained in the compact design. Figure 5 shows a graph comparing the analytical model to the actual full scale test. The full scale test with a complete beam and column assembly was performed to the requirements under AISC 341 Section K. The full scale test passed the requirements for the SMF classification as can be seen in Figure 6 for the specimen with 6-inch columns and 9-inch beam.



Where Can I Get More Information?
The EPL is now recognized in the ICC-ES ESR-2802 code report as an SMF. EPL solutions are also offered in the Strong Frame Moment Frame Selector Software. Want to see how the new connection and member sizes can expand your design options? Visit www.strongtie.com to download the new Strong Frame Design Guide or contact your Simpson representative for more information.