Paul McEntee

About Paul McEntee

A couple of years back we hosted a “Take your daughter or son to work day,” which was a great opportunity for our children to find out what their parents did. We had different activities for the kids to learn about careers and the importance of education in opening up career opportunities. People often ask me what I do for Simpson Strong-Tie and I sometimes laugh about how my son Ryan responded to a questionnaire he filled out that day:

Q.   What is your mom/dad's job?
A.   Goes and gets coffee and sits at his desk

Q.   What does your mom/dad actually do at work?
A.   Walks in the test lab and checks things

When I am not checking things in the lab or sitting at my desk drinking coffee, I manage Engineering Research and Development for Simpson Strong-Tie, focusing on new product development for connectors and lateral systems.

I graduated from the University of California at Berkeley and I am a licensed Civil and Structural Engineer in California. Prior to joining Simpson Strong-Tie, I worked for 10 years as a consulting structural engineer designing commercial, industrial, multi-family, mixed-use and retail projects. I was fortunate in those years to work at a great engineering firm that did a lot of everything. This allowed me to gain experience designing with wood, structural steel, concrete, concrete block and cold-formed steel as well as working on many seismic retrofits of historic unreinforced masonry buildings.

Introduction to the Site-Built Shearwall Designer Web Application

Written by Brandon Chi, Engineering Manager, Lateral Systems at Simpson Strong-Tie.

Wood shearwalls are typically used as a lateral-force-resisting system to counter the effects of lateral loads. Wood shearwalls need to be designed for shear forces (using sheathing and nailing), overturning (using holdowns), sliding (using anchorage to concrete) and drift, to list some of the main dangers.  The Simpson Site-Built Shearwall Designer (SBSD) web app is a quick and easy tool to design a wood shearwall based on demand load, wall geometry and design parameters.

The web application provides two options for generating an engineered shearwall solution: (1) Solid Walls; and (2) Walls with Opening using the force-transfer-around opening (FTAO) method. Both options generate solutions that offer different combinations of sheathing, nailing, holdowns, end studs and number/type of shear anchors. The app can generate a PDF output for each of the possible solutions. Design files can be saved and reused for future projects.

App Overview

Design Input: 

Figure 1 shows the input screens for the “Solid Walls” and “Walls with Opening” designs with common wall parameters that are applicable to both design options. The user interface uses quick drop-down menu and input fields for the designer to select the different options and parameters. Unless otherwise noted, all the input loads are to be nominal (un-factored) design loads. The application will apply load combinations to determine the maximum demand forces for the shearwall design.

Figure 1A. Application Design Criteria Input. – Solid Wall

Figure 1B. Application Design Criteria Input. – Walls with Opening

Figure 1C. Application Design Criteria Input. – Common Wall Input Parameters

Figure 2 shows the allowable stress design (ASD) load combinations used for calculating the demand loads for the different components of the wood shearwall (i.e., holdown, compression post, sheathing and nailing design, etc.).

Figure 2. Load Combinations.

In addition to the lateral loads (wind and seismic) applied at the top of the wall and the wall’s own weight, uniform loads on top of the wall and concentrated point loads at the end posts can also be modeled. (See Figure 3.)

Figure 3. Addition Loads on the Wall.

Embedded anchor or embedded strap holdowns can be modeled by the app. (See Figure 4.) For the embedded strap option, additional input parameters are required since they will affect the allowable load of the selected strap holdown.

Figure 4. Holdown Design Options.

The Designer has the option to include additional sources of vertical displacement for drift calculation. (See Figure 5.)

Figure 5. Other Sources of Vertical Displacement Options.

Design Calculations:

For hand-calculated design when the demand forces are determined, the holdown size and shear anchorage can be selected from tabulated values. Design for the sheathing/nailing and compression post is relatively straightforward as well; however, the shearwall drift calculation may take a bit more work. This is where the SBSD app comes in handy. Below are two sections on the shearwall drift and strap force calculations and assumptions used in the SBSD application. If you are interested, please contact Simpson Strong-Tie for other design assumptions used in designing the SBSD app.

Shearwall Deflection Calculations:

Equation 1 shows the shearwall deflection equation from the 2008 Edition of Wind & Seismic Special Design Provisions for Wind and Seismic (SDPWS).

The Δa value from the third term of the equation is the total vertical elongation of the wall holdown system from the applied shear in the shearwall. The third term accounts for the additional displacement from holdown displacement. For holdown deflection, the deflection value depends on the post size used with the holdown size. When hand-calculating shearwall drift, Designers may have to perform a couple of iterations to come to the final post and holdown size. The SBSD app accounts for the holdown displacement and the post size used for overturning force calculation.

For shearwall-with-opening deflection calculation, EQ-2 is used in the SBSD app.

The solid wall, ∆solid wall, term is calculated using EQ-1 above. For the window strip and wall pier deflection terms, the height “h” used in EQ-1 is taken as the height of the window opening. ∆a is the deflection from nail slip in the shearwall. For more information regarding shearwall deflection with opening, please refer to Example 1 in Volume 2 of the 2015 IBC SEAOC Structural/Seismic Design Manual.

Strap Force Calculations:

For the Wall with Opening design option, there are several methods (Drag Strut, Cantilever Beam, SEAOC/Tompson, Diekmann) to calculate the force transfer around the opening. In the SBSD app, the Diekmann technique is used to calculate the pier forces in the shearwall and the strap forces around the opening. When calculating the strap forces, the SBSD app assumes they are the same at the top and bottom of the opening. In addition, contribution of the gravity load only affects the overturning forces in the holdown and post design but not the wall pier forces or strap forces.

Design Output:

Once all design parameters are entered and calculated, a list of possible solutions (where available) will be shown. (See Figure 6.) Common parameters such as sheathing material and type, wood species, minimum lumber grade, etc., are shown first, followed by other design parameters. The user can filter the solutions by seismic drift or wind drift.

Figure 6. Onscreen Output.

The Designer can select the PDF button next to the desired solution to see a PDF design file on a separate screen. (See Figure 7.)  The PDF design file contains the detailed design criteria input by the Designer, calculated demand loads, shearwall material summary, and a design summary for holdown, sheathing, and compression post design. A detail summary for shearwall deflection is also shown, with each term of the shearwall deflection equation (EQ-1) separated. Shear anchorage and design assumption notes follow the design summary section. This PDF file can be saved and printed by the Designer.

Figure 7. Detailed PDF Output.

I hope you find the SBSD web app helpful for your day-to-day wood shearwall design needs. If you have any questions or comments, please leave them in the comments section below.

What Makes a Good Training Facility?

This blog post was written by Charlie Roesset, Director of Training for Simpson Strong-Tie.

When it comes to training, there are many well-researched principles about what makes an environment conducive to improved adult learning.

While we try to hold all training events in facilities that meet most of these principles, (even when traveling to our customers or users means we have to conduct events in hotel meeting rooms) we prefer to host you at our own locations.

To this end, we invest a tremendous amount of time and resources to build and offer dedicated training facilities across the country. These facilities meet all the basic requirements for improved adult learning, but much more as well.

By having our own dedicated training facilities, we can provide learners with a much richer experience and contextually relevant displays.

These displays include partially deconstructed wall segments, foundations and roof systems that give learners a bigger picture of the applications being studied.

Many displays allow for hands-on installations and exercises that allow for improved comprehension of the product use and limitations. Even for the engineering community, who typically are limited to images from a catalog, the hands-on activities add great value. It’s always interesting to see the reaction that engineers have to actually seeing a system approach and having an opportunity to participate in learning that goes way beyond sitting and listening to a lecture.

Sometimes learners just need to see, feel or hold something in order to really understand a concept or product application. We make every effort to bring legitimate educational content to our workshops, supported by products that we hope will furnish solutions to your needs.

Many of our facilities include a plant tour and/or testing-facility tour as well. While these components don’t always align directly with the learning objectives, they do offer a chance for our guests to raise their energy levels and get a better understanding of that scale, capabilities, and commitment to quality that we bring to bear in our endeavor to help people build safer structures.

Additionally, we offer our facilities to customers, associations and industry organizations to use for their own meetings and training events. If you haven’t been to one of our workshops or visited one of our facilities, I highly encourage you to join the 35,000 plus who have over the last four years. You can find a complete list of workshops on our training home page. I expect that you’ll find it an educational and highly engaging experience that helps you build safer structures as well.

Decrypting Cold-Formed Steel Connection Design

As published in STRUCTURE magazine, September 2016. Written by Randy Daudet, P.E., S.E., Product Manager at Simpson Strong-Tie.  Re-posted with permission. 

One of the world’s greatest unsolved mysteries of our time lies in a courtyard outside of the Central Intelligence Agency (CIA) headquarters in Langley, Virginia. It’s a sculpture called Kryptos, and although it’s been partially solved, it contains an inscription that has puzzled the most renowned cryptanalysts since being erected in 1990. Meanwhile, in another part of the DC Beltway about 15 miles to the southeast, another great mystery is being deciphered at the American and Iron Institute (AISI) headquarters. The mystery, structural behavior of cold-formed steel (CFS) clip angles, has puzzled engineers since the great George Winter helped AISI publish its first Specification in 1946. In particular, engineers have struggled with how thin-plate buckling behavior influences CFS clip angle strength under shear and compression loads. Additionally, there has been considerable debate within the AISI Specification Committee concerning anchor pull-over strength of CFS clip angles subject to tension.

cfs-clip-attachment

The primary problem has been the lack of test data to explain clip angle structural behavior. Even with modern Finite Element Analysis (FEA) tools, without test data to help establish initial deformations and boundary conditions, FEA models have proven inaccurate. Fortunately, joint funding provided by AISI, the Steel Framing Industry Association (SFIA), and the Steel Stud Manufactures Association (SSMA) has provided the much-needed testing that has culminated in AISI Research Report RP15-2, Load Bearing Clip Angle Design, that summarizes phase one of a multi-year research study. The report summarizes the structural behavior and preliminary design provisions for CFS load bearing clip angles and is based on testing that was carried out in 2014 and 2015 under the direction of Cheng Yu, Ph.D. at the University of North Texas. Yu’s team performed 33 tests for shear, 36 tests for compression, and 38 tests for pull-over due to tension. Clip angles ranged in thickness from 33 mils (20 ga.) to 97 mils (12 ga.), with leg dimensions that are common to the CFS framing industry. All of the test set-ups were designed so that clip angle failure would preclude fastener failure.

For shear, it was found that clips with smaller aspect ratios (L/B < 0.8) failed due to local buckling, while clips with larger aspect ratios failed due to lateral-torsional buckling. Shear test results were compared to the AISC Design Manual for coped beam flanges, but no correlation was found. Instead, a solution based on the Direct Strength Method (DSM) was employed that utilized FEA to develop a buckling coefficient for the standard critical elastic plate-buckling equation. Simplified methods were also developed to limit shear deformations to 1/8 inch. For compression, it was found that flexural buckling was the primary failure mode. Test results were compared to the gusset plate design provisions of AISI S214, North American Standard for Cold-Formed Steel Framing – Truss Design, and the axial compression member design provisions and web crippling design provisions of AISI S100, North American Specification for the Design of Cold-Formed Steel Structural Members, but no good agreement was found. Therefore, an alternate solution was developed that utilized column theory in conjunction with a Whitmore Section approach that yielded good agreement with test results. It was further found that using a buckling coefficient of 0.9 in the critical elastic buckling stress equation will produce conservative results. Finally, for pull-over due to tension, it was found that clip angle specimens exhibited significant deformation before pulling over the fastener heads (essentially the clip turns into a strap before pull-over occurs). However, regardless of this behavior, tested pull-over strength results were essentially half of AISI S100 pull-over equation E4.4.2-1.

Thanks to AISI Research Report RP15-2, there is a clearer understanding of the CFS clip angle structural behavior mysteries that have puzzled engineers for many years. However, just as the CIA’s Kryptos remains only partially solved, some aspects of clip angle behavior remain a mystery. For instance, how are the test results influenced by the fastener pattern? All of the test data to date has used a single line of symmetrically placed screws. This is something that does not occur for many practical CFS framing situations and will need additional research. Another glaring research hole is the load versus deflection behavior of clip angles under tension. As briefly mentioned above, the existing pull-over testing has demonstrated that excessive deflections can be expected before pull-over actually occurs. Obviously, most practical situations will dictate a deflection limit of something like 1/8 inch or 1/4 inch, but today we don’t have the test data to develop a solution. Fortunately, AISI in conjunction with its CFS industry partners continues to fund research on CFS clip angle behavior that will answer these questions, and possibly many more.

Use Strong-Wall® Shearwall Selector to Design Shearwalls

This blog post was written by Travis Anderson.

Strong-Wall Shearwall Selector-Homepage

In time for spring and summer 2017 construction projects, Simpson Strong-Tie has launched the newest version of the Strong-Wall Shearwall Selector for use with engineered design. The latest release is an easy-to-use Web-based application (that’s right, no software to download) that has been updated to comply with the 2015 IBC and now provides solutions for all three Strong-Wall Shearwall types: the Steel Strong-Wall® shearwall (SSW), the Strong-Wall wood shearwall (WSW) and the wood Strong-wall shearwall (SW). If you are familiar with the Strong-Wall Shearwall Selector, you can begin using the web application immediately. For those of you who would like to know more about the web app, please read on.

The Strong-Wall Shearwall Selector was created to help the Designer select the appropriate shearwall solution for a given application in accordance with the latest building code requirements. By performing a technical analysis, the web app provides actual drift and uplift values for a wind or seismic design shear load.

The Strong-Wall analysis also considers simultaneous, vertically applied load. In cases of multiple walls in a line, the program performs a rigidity analysis and determines the actual distributed shear to each wall. When walls are stacked in a two-story configuration, the program evaluates cumulative overturning effects to ensure that the wall, anchor bolt and anchorage to the foundation are not overstressed.

The web app provides two modes for generating an engineered solution: Optimized In-Plane Shear or Manual In-Plane Shear. The Optimized mode lists several possible solutions for the selected criteria in the order of cost. The Manual mode evaluates any number or combination of walls for adequacy based on the selected criteria. The Designer has the option to generate an Anchorage Solution based on foundation type. Once a solution has been selected, the web app will generate a pdf output. Files can be saved and reused for future designs.

Input Variables Within the Two Solution Modes:

Job Name: Enables the Designer to provide a specific job name for a project.

Wall Name: Enables the Designer to provide a name for each wall line in a project.

Wall Type (Manual Only): Solutions are provided for the selected Strong-Wall panel type: SSW, WSW, SW

Application: Defines the proposed application (use) of the wall. The choices are for walls in a garage front, a standard wall on concrete, on a first-story wood-floor system, in a second-floor non-stacked application, in a two-story stacked application, or in a balloon-framed application. For the Steel Strong-Wall® (SSW) and Strong-Wall wood shearwall (WSW), garage front may be chosen with or without the portal kit. Higher shear capacities are available when the portal kit is used.

Cold-Formed Steel Construction (CFS): This option appears for “Garage Front,” “Standard Wall on Concrete,” “First-Story, Raised-Floor System” and “Two-Story Stacked” applications. If the check box is enabled, the program will provide the proper Steel Strong-Wall model for use in CFS construction.

1st Story Wall on Wood Floor (SW – Wood Strong-Wall Shearwall only): This check box only appears if a Two-Story Stacked application has been selected. If enabled, the program will then assume the lower story wall, in a stacked application, is installed on a wood floor.

Strong-Wall Shearwall Selector-Input Variables

Design Criteria:

The design criteria may now be selected. Drop-down menus provide options for Applicable Building Code, load type, concrete strength, wall height, wall geometry and floor depth (if applicable). Entry fields may be used to indicate shear- and axial-loading information. The following applies once the appropriate design criteria have been input: If Optimized In-Plane Shear has been selected, the possible solutions are displayed in the Strong-Wall Panel Solutions list. If Manual In-Plane Shear has been selected, a list of available walls will be displayed in the Strong-Wall Panel Solutions list, any of which may then be selected and added to the desired Solution.

Strong-Wall Shearwall Selector-Design Criteria

Code: Wall solutions are provided in accordance with the requirements of the 2015 and 2012 International Building Code (IBC). Code reports may be found here.

Load Type: This criterion defines whether the input shear load is due to wind or seismic forces. The Designer must input the controlling load. The appropriate seismic “R” values are provided for the selected code.

Concrete Strength: Concrete strength may be selected based on specific project conditions. Default concrete strengths of 2500 psi, 3000 psi, 3500 psi, 4000 psi and 4500 psi are provided in the drop-down menu. Note that for shearwall selection purposes, concrete strengths are only applicable to Steel Strong-Wall® (SSW) and Strong-Wall wood shearwall (WSW). In some cases, lower anchorage forces may be obtained with a higher concrete strength. The concrete strength is also used for determining the anchorage tension capacity.

Wall Height: Select the nominal wall height. Actual wall heights are shown under the “H” column of the Solution(s).

Shear Load: Input the total Allowable Stress Design (ASD) design (demand) shear load along the wall line. Include all appropriate load factors on the shear load prior to input for the load combination under consideration. For Two-Story Stacked applications, input the story shear at each level and the program will evaluate the first-story walls for the total shear.

Floor-Joist Depth: This option appears only with first-story raised-floor systems and two-story

stacked applications. Floor-joist depth affects the capacity of Steel Strong-Wall panels installed on wood floors. Floor-joist depth is also considered in the cumulative overturning evaluation of two-story stacked wood or steel walls.

Header Thickness: This option appears only when “Garage Front” applications and wall heights of 7′ or 8′ with a header on top are selected. This option is used to select the proper Wood Strong-Wall panel model (thickness) based on the nominal header thickness of 4″ or 6″.

Header Type: This option only appears when “Header Thickness” of 4″ is selected. It then provides an option to select a solid or double-ply header. Values for the wood Strong-Wall panels will slightly decrease if the double-ply header option is selected. Steel Strong-Wall panels with multi-ply headers are limited to wind designs and SDC A-C.  .

Maximum Number of Wall Segments per Wall Line (Optimized mode only): Here the maximum number of available wall segments along a particular wall line is specified. The program enables the Designer to select a maximum of four wall segments per wall line (3 segments maximum for garage fronts.) For more wall segments per wall line, use the Manual mode.

Fill Each Segment (Optimized mode only): If this checkbox is disabled, then the minimum number of Strong-Wall shearwalls that can serve as solutions is provided up to the “Max # of Wall Segments” previously specified. If this checkbox is enabled, then the “Max # of Wall Segments” will always be used and filled with Strong-Wall shearwalls.

Segment Number, Maximum Width, Axial (lb.) (Optimized mode only): For each wall segment along a wall line, the maximum desired width of that segment and the axial load on that particular segment may be specified. The axial load is the total vertical upward or downward load assumed to act on the entire panel width. Include all appropriate load factors on the axial load prior to input for the load combination under consideration. A positive axial load reduces the actual uplift of the panel, while a negative axial load increases the actual uplift of the panel. The combined effect of the vertical axial load and overturning force is considered in the Steel Strong-Wall® (SSW) and Strong-Wall wood shearwall (WSW) solutions. The combined effect of the vertical axial load and overturning on the wood Strong-Wall (SW) shall be evaluated by the Designer so as not to exceed the “C4” and “T1” allowable vertical loads. Download an excerpt from our catalog for more information.

Axial Load 1st Story (Manual mode only): See discussion above on axial load. The axial load selected is initially applied on all Available Wall solutions. As walls are selected using the “Add” button, the axial load remains constant. If it is desired that each wall have a different axial load, then input the corresponding axial load value for the first wall and click on “Add Solution” to send it to the Selected Solution. Then enter the new axial load value for the next wall and continue this process until all the product selections are complete.

Maximum Wall Segment Width: This optional input limits the Available Strong-Wall Panels to the maximum width specified.

Available Wall(s) (Manual mode only): Based on the input Design Criteria, all Available Strong-Wall Panels and their allowable loads are listed as an option for selection. The Available Strong-Wall list is independent of the input shear load and instead represents a list whereby any quantity or combination of walls can be selected to resist the shear load.

Solution(s) and Output :

 Possible Solution(s) (Optimized mode only): Up to four possible solutions may be displayed and are designated as Sol # (solution number) in the order of relative cost (lowest to highest material cost).

Selected Solution (Manual mode only):

Add Another Solution: Click on the “Add” button to select wall from Available Wall(s) list, which enters it into the Selected Solution list. You may also double-click on an Available Wall to add it to the Selected Solution.

Clear: Click on the “Clear Selected Solutions” button to entirely remove all previously selected walls in the Selected Solution.

Generate PDF: This button creates a .pdf summary of the wall solution. Under Optimized mode, the output solution is created for the Sol# (solution number) that is highlighted. Under Manual mode, the Output is created for all walls shown in the selected solution list.

Design Anchorage: This option appears at the bottom of the page. If desired, enable the check box next to “Design Anchorage” and select Foundation Type. Anchorage design solutions will then be included in the PDF output.

Notes for Designer: Special notes related to the input variables are displayed in this window during the input process. When the Manual In-Plane Shear tab is selected, the Notes for Designer will indicate whether the Selected Solution is adequate to resist the applied design loads.

Strong-Wall Shearwall Selector-SolutionsStrong-Wall Shearwall Selector-Solution Output

Anchorage Solutions and Output:

 The Designer will have the option to generate an Anchorage Solution appended to the Strong-Wall shearwall solution. If desired, Select Foundation Type, then enable the check box next to Design Anchorage, and the .pdf file will be generated with the anchorage solution on subsequent pages. The designer can choose anchorage solutions based on foundation type for all shearwalls. The two foundation types are slab-on-grade and stemwall and are selected from a drop-down menu. Within each foundation type, the Designer can choose a specific footing type as follows:

Slab-on-Grade Footing Types: Garage curb, slab edge, brick ledge and interior.

Stemwall Footing Types: Garage front and perimeter.

Anchorage solutions are provided based on the shearwall solution(s) selected and the following design criteria: application, load type, actual uplift and concrete strength.

Anchor Bolt: Two anchor bolt solutions are available for the wood Strong-Wall®. They are the PAB7 and the SSTB, both of which are ASTM F1554 Gr. 36 material. The Steel Strong-Wall® uses a single anchor type, SSWAB, which may be either ASTM F1554 Gr. 36 or ASTM A449 (high-strength) material depending on the actual uplift. The Strong-Wall wood shearwall uses a single anchor type, WSW-AB, which may be either ASTM F1554 Gr. 36 or ASTM A449 (high-strength) material depending on the actual anchor tension.

Concrete Service Condition: This criterion refers to whether the concrete is determined to be cracked or uncracked based on analysis at service loads. See ACI 318 for the different reduction factors associated with cracked and uncracked concrete.

Strong-Wall Shearwall Selector-Anchorage Strong-Wall Shearwall Selector-Anchorage Output

The anchorage design .pdf output summarizes all applicable design details including the footing type, minimum footing dimensions, anchor bolt and shear anchorage. The Designer is responsible for foundation design (size and reinforcement) to resist overturning, soil pressure, etc.

Product Information:  Select for more product and application information.

Upload a Saved File: Designer can upload any previously used solution.

Report Applications Issues or Provide Feedback: If you are experiencing issues with the application or simply would like to provide feedback, please use this link. Simpson Strong-Tie values your feedback.

Strong-Wall Shearwall Selector-Info Save Issue

Get started on your next design project with the Strong-Wall® Shearwall Selector web application!

New Moment-Resisting Post Base

Jhakak Vasavada

Jhalak Vasavada is currently a Research & Development Engineer for Simpson Strong-Tie. She has a bachelor’s degree in civil engineering from Maharaja Sayajirao (M.S.) University of Baroda, Gujarat, India, and a master’s degree in structural engineering from Illinois Institute of Technology, Chicago, IL. After graduation, she worked for an environmental consulting firm called TriHydro Corporation and as a structural engineer with Sargent & Lundy, LLC, based in Chicago, IL. She worked on the design of power plant structures such as chimney foundations, boiler building and turbine building steel design and design of flue gas ductwork. She is a registered Professional Engineer in the State of Michigan.

At Simpson Strong-Tie, we strive to make an engineer’s life easier by developing products that help with design efficiency. Our products are designed and tested to the highest standards, and that gives structural engineers the confidence that they’re using the best product for their application.

Installed MPBZ

Figure 1: Installed MPBZ

Having worked in the design industry for almost a decade, I can attest that having a catalog where you can select a product that solves an engineer’s design dilemma can be a huge time- and money-saving tool. Design engineers are always trying to create efficient designs, although cost and schedule are always constraints. Moment connections can be very efficient — provided they are designed and detailed correctly. With that in mind, we developed a moment post base connector that can resist moment in addition to download, uplift and lateral loads. In this post, I would like to talk about moment-resisting/fixed connections for post bases and also talk about the product design process.

Figure 2. MPB44Z Graphic

Figure 2. MPB44Z Graphic

Lateral forces from wind and seismic loads on a structure are typically resisted by a lateral-force-resisting system. There are three main systems used for ordinary rectangular structures: (a) braced frames, (b) moment frames and (c) shearwalls. Moment frames resist lateral forces through bending in the frame members. Moment frames allow for open frames by eliminating the need for vertical bracing or knee bracing. Moment resistance or fixity at the column base is achieved by providing translational and rotational resistance. The new patent-pending Simpson Strong-Tie® MPBZ moment post base is specifically designed to provide moment resistance for columns and posts. An innovative overlapping sleeve design encapsulates the post, helping to resist rotation at its base.

The allowable loads we publish have what I call “triple backup.” This backup consists of Finite Element Analysis (FEA), code-compliant calculations and test data. Here are descriptions of what I mean by that.

Finite Element Analysis Confirmation

Once a preliminary design for the product is developed, FEA is performed to confirm that the product behaves as we expect it to in different load conditions. Several iterations are run to come up with the most efficient design.

Figure 3. FEA Output of Preliminary MPB Conceptual Design

Figure 3. FEA Output of Preliminary MPB Conceptual Design

Code-Compliance Calculations

Load calculations are prepared in accordance with the latest industry standards. The connector limit states are calculated for the wood-post-to-MPBZ connection and for MPBZ anchorage in concrete. Steel tensile strength is determined in accordance with ICC-ES AC398 and AISI S100-07. Wood connection strength is determined in accordance with ICC-ES AC398 and AC13. Fastener design is analyzed as per NDS. SDS screw values are analyzed using known allowable values per code report ESR-2236. The available moment capacity of the post base fastened to the wood member is calculated in accordance with the applicable bearing capacity of the post and lateral design strength of the fasteners per the NDS or ESR values. Concrete anchorage pull-out strength is determined in accordance with AC398.

Test Data Verification

The moment post base is tested for anchorage in both cracked and uncracked concrete in accordance with ICC-ES AC398.

Figure 4. Uplift Test Setup

Figure 4. Uplift Test Setup

The moment post base assembly is tested for connection strength in accordance with ICC-ES AC13.

Figure 5: Moment (induced by lateral load application) Test Set Up

Figure 5: Moment (induced by lateral load application) Test Set Up

The assembly (post and MPBZ) is tested for various loading conditions: download, uplift and lateral load in both orthographic directions and moment. Applicable factor(s) of safety are applied, and the controlling load for each load condition is published in the Simpson Strong-Tie Wood Construction Connectors Catalog.

Now let’s take a look at a sign post base design example to see how the MPBZ data can be used.

Design Example:

Figure 6: Sign Post Base Design Example

Figure 6: Sign Post Base Design Example

The MPB44Z is used to support a 9ʹ-tall 4×4 post with a 2ʹ x 2ʹ sign mounted at the top. The wind load acting on the surface of the sign is determined to be 100 lb. The MPB44Z is installed into concrete that is assumed to be cracked.

  • The design lateral load due to wind at the MPB44Z is 100 lb.
  • The design moment due to wind at the MPB44Z is (100 lb.) x (8 ft.) = 800 ft.-lb.
  • The Allowable Loads for the MPB44Z are:
    • Lateral (F1) = 1,280 lb.
    • Moment (M) = 985 ft.-lb.
  • Simultaneous Load Check:
    • 800/985 + 100/1,280 = 0.89. This is less than 1.0 and is therefore acceptable.

mpbz-deflection-evaultion

We are very excited about our new MPBZ! We hope that this product will get you excited about your next open-structure design. Let us know your thoughts by providing comments here.

Great ShakeOut Earthquake Drill 2016

The Great ShakeOut Earthquake Drill is an annual opportunity for people in homes, schools and organizations to practice what to do during earthquakes and improve their preparedness. In a post I wrote last October about the Great ShakeOut, I reminisced about the first earthquake I had to stop, drop and cover for – the Livermore earthquake in January, 1980. This year got me thinking about how our evacuation drills work.

At Simpson Strong-Tie, we use the annual Great ShakeOut drill to practice our building evacuation procedures. Evacuation drills are simple in concept – alarms go off and you exit the building. We have volunteer safety wardens in different departments who confirm that everyone actually leaves their offices. There are always a few people who want to stay inside and finish up a blog post. Once the building is empty and we have all met up in the designated meeting area, we do a roll call and wait for the all-clear to get back to work.

Several years ago the alarms went off. While waiting for the drill to end, we were concerned to see fire fighters arrive and rush into the building. Realizing this was not a drill, there were some tense moments of waiting. The fire chief and our president eventually walked out of the building and our president was yelling for one of our engineers. Turns out the engineer (who shall remain nameless) was cooking a chicken for lunch. Yes, a whole chicken. The chicken didn’t make it – I’m not sure what the guilty engineer had for lunch afterwards. At least we received extra evacuation practice that year. We aren’t allowed to cook whole chickens in the kitchen anymore.

Simpson Strong-Tie is helping increase awareness about earthquake safety and encouraging our customers to participate in the Great ShakeOut, which takes place next Thursday on October 20. It’s the largest earthquake drill in the world. More than 43 million people around the world have already registered on the site.

On October 20, from noon to 2:00 p.m. (PST), earthquake preparedness experts from the Washington Emergency Management Division and FEMA will join scientists with the Washington Department of Natural Resources and the Pacific Northwest Seismic Network for a Reddit Ask Me Anything – an online Q&A. Our very own Emory Montague will be answering questions. The public is invited to ask questions here. (Just remember that this thread opens the day before the event and not sooner.)

Emory Montague from Simpson Strong-Tie

Emory, ready to answer some seismic-related questions.

We’re also providing resources on how to retrofit homes and buildings, and have information for engineers here and for homeowners here.

Earthquake risk is not just a California issue. According to the USGS, structures in 42 of 50 states are at risk for seismic damage. As many of you know, we have done a considerable amount of earthquake research, and are committed to helping our customers build safer, stronger homes and buildings. We continue to conduct extensive testing at our state-of-the-art Tye Gilb lab in Stockton, California. We have also worked with the City of San Francisco to offer education and retrofit solutions to address their mandatory soft-story building retrofit ordinance and have created a section on our website to give building owners and engineers information to help them meet the requirements of the ordinance.

Last year, Tim Kaucher, our Southwestern regional Engineering Manager, wrote about the City of Los Angeles’s Seismic Safety Plan in this post. Since that time, the City of Los Angeles has put that plan into action by adopting mandatory retrofit ordinances for both soft-story buildings and non-ductile concrete buildings. Fortunately, California has not had a damaging earthquake for some time now. As a structural engineer, I find it encouraging to see government policy makers resist complacency and enact laws to promote public safety.

Participating in the Great ShakeOut Earthquake Drill is a small thing we can all do to make ourselves more prepared for an earthquake. If your office hasn’t signed up for the Great ShakeOut Earthquake Drill, we encourage you to visit shakeout.org and do so now.

Being an Engineering Intern at Simpson Strong-Tie

Editor’s Note: This week’s blog post is written by one our college interns in the Engineering Department. Ian Kennedy spent the summer of 2016 as an intern for the McKinney office of Simpson Strong-Tie. He will be starting his second year at Calpoly San Luis Obispo in Fall 2016 studying Mechanical Engineering. As an intern, he spent his time helping the branch engineering department with numerous projects, as well as exploring projects of his own. He enjoys metalworking, fitness, and the outdoors. Thank you to Ian Kennedy for this week’s post.

As I write this, I can’t help but laugh that of all the interns studying structural, civil or architectural engineering in school, the intern writing the post for our Structural Engineering Blog is studying mechanical engineering. I haven’t met too many mechanical engineers during my time here at Simpson Strong-Tie. I know there are a few, but while a lot of mechanical engineers are focused on making things move, most of the people here concentrate primarily on making things stay still. I’ve found what Simpson does to be more important than a lot of my peers at school may realize – it seems ME students are more preoccupied with cars and equipment than with what’s keeping the roof from coming down on top of them. Still, my exigence alone wasn’t enough to cancel the uneasiness of a first-time intern doing things he never knew he would be doing.

Simpson Strong-Tie intern Ian Kennedy.

A headshot of Simpson Strong-Tie intern Ian Kennedy.

If I had to go back and give myself a one-sentence explanation of what would be expected of me here, it would be this: “You’re going to find out what it takes to make a structure or system not work, then make sure no one else ever has that happen.” Although I doubt I would have appreciated what that meant at the time, I now think that it’s the most succinct explanation both of what Simpson Strong-Tie does, and of how I would need to approach my new position.

Engineering intern Paul Casabag working on a DIY porch swing project.

Engineering intern Paul Casabag working on a DIY porch swing project.

It started to click with me when I worked on load-rating calculations for some of the Simpson Strong-Tie products. A rating isn’t determined by what a product’s strengths are, but rather its weaknesses: “Here, here, and here are the ways things can go wrong, these are the ways it’s going to break, and finally, this is a list of the ways it’s going to be misused in reality. Now make sure none of that can feasibly happen, or people can get hurt.”

diy-porch-swing-progress2

Engineering interns building a DIY porch swing that is sturdy and durable.

That’s a heavy burden, even if you’re just an intern. It’s given me a solemn respect for the engineers that sign off on calculations, testing and construction plans. It’s a respect I wasn’t anticipating: Respect for their intellect, sure; for their work ethic, absolutely; but I can’t say that I expected myself to develop a respect for the people I work with because of the weight of human life they carry. Maybe that’s because it’s my first experience with real engineering. Maybe it’s something every engineer develops through classes or experience – I hope it is, because the effect I believe it can have on the decisions engineers make is incredible.

I continued to realize the truth behind my view when I spent time in the onsite test lab. Things break. Sometimes it happens slowly, and sometimes it happens faster than you can blink. A lot of the time it doesn’t even happen how I expected, but, without fail, an engineer had made sure to check that failure mode in the calcs. And the message in my head reminded me – figure out how it can break, so that no one else has to.

DIY porch swing DIY porch swing

The DIY porch swing complete and ready to enjoy.

In adjusting to my role as an intern, I found my view to be crucial to my growth. I made mistakes, as everyone does. There were countless things I didn’t consider, or hadn’t learned before, and in a way these were failures. But they were small failures, ones that could be addressed and learned from with the support and experience of the people I work with. I wouldn’t have grown without these failures, and I wouldn’t have been able to anticipate them in the future. Just like the products Simpson makes, I was strengthened by being tested and corrected. I used what I learned from my mistakes, and I’ll make sure that those aren’t ways in which I’ll fail in the future.

I can’t say for sure yet how being an intern here has strengthened my future specifically in mechanical engineering, but I can clearly identify the skills it’s given me that translate across anything I hope to do: continuous improvement, preparation for anything to go wrong, and respect for the one load not covered by ASD or LRFD – the weight of human life. These are the lessons I’ve learned above everything else at Simpson Strong-Tie. These are things I’ve found not only the company to stand for, but everyone working for it as well. Internships are supposed to simply provide an opportunity to gain skill and experience in the industry; however, more than that, my internship with Simpson Strong-Tie has taught me invaluable lessons that I hope my peers can someday have a chance to learn as well.

How to Select a Connector Series – Holdowns

Keith Cullum started off our “How to Select a Connector” series with Hurricane Ties. This week we will discuss how to select holdowns and tension ties, which are key components in a continuous load path. They are used to resist uplift due to shearwall overturning or wind uplift forces in light-frame construction. In panelized roof construction, holdowns are used to anchor concrete or masonry walls to the roof framing.

shearwall-segment

Holdowns can be separated in two basic categories – post-installed and cast-in-place. Cast-in-place holdowns like the STHD holdowns or PA purlin anchors are straps that are installed at the time of concrete placement. They are attached with nails to wood framing or with screws to CFS framing. After the concrete has been placed, post-installed holdowns are attached to anchor bolts at the time of wall framing. The attachment to wood framing depends on the type of holdowns selected, with different models using nails, Simpson Strong-Tie® Strong-Drive® SDS Heavy-Duty Connector screws or bolts.

A third type of overturning restraint is our anchor tiedown system (ATS), which is common in multistory construction with large uplift forces. I discussed the system in this blog post.

methods-of-overturning-restraintGiven the variety of different holdown types, a common question is, how do you choose one?

For prescriptive designs, such as the IRC portal frame method, the IRC or IBC may require a cast-in-place strap-style holdown. Randy Shackelford did a great write-up on the PFH method in this post.

For engineered designs, a review of the design loads may eliminate some options and help narrow down the selection.

Holdown TypeMaximum Load (lb.)
Cast-in-Place5,300
Nailed5,090
SDS Screws14,445
Bolted19,070

sthd-installation

htt-installation

hdb-installation

hdu-installation

I like flipping through catalog pages, but our Holdown Selector App is another great tool for selecting a holdown to meet your demand loads. Select cast-in-place or post-installed, enter your demand load and wood species, and the application will list the holdown solutions that work for your application.

holdown-selector-app

The application lists screwed, nailed and bolted solutions that meet the demand load in order of lowest installed cost, allowing the user to select the least expensive option.

Adjustability should be considered when choosing between a cast-in-place and a post-installed holdown. Embedded strap holdowns are economical uplift solutions, but they must be located accurately to align with the wood framing. If the anchor bolt is located incorrectly for a post-installed holdown, raising the holdown up the post can solve many problems. And anchors can be epoxied in place for missing anchor bolts.

offset-holdown-raised-off-sillWe are often asked if you can double the load if you install holdowns on both sides of the post or beam. The answer is yes, and this is addressed in our holdown general notes.

notes-on-doubling-loads

Nailed or screwed holdowns need to be installed such that the fasteners do not interfere with each other. Bolted holdowns do not need to be offset for double-sided applications. Regardless of fastener type, the capacity of the anchorage and the post or beam must be evaluated for the design load.

double-sided-bolted-purlin-cross-tie

double-sided-hdu-offset-installation

Once you have selected a holdown for your design, it is critical to select the correct anchor for the demand loads. Luckily, I wrote a blog about Holdown Anchorage Solutions last year. What connector would you like to see covered next in our series? Let us know in the comments below.

DoD-Compliant CFS Wall Framing Design

jeff-kreinkeThis week’s post comes from Jeff Kreinke, PE, SE, a structural Project Manager with Excel Engineering in Fond du Lac, WI. Jeff earned his Bachelor’s degree in Civil & Environmental Engineering from the University of Wisconsin-Madison. He has worked in Excel Engineering’s structural department for 15 years and specializes in cold-formed steel systems design. This specialization has included the design of dozens of “blast” resistant structures per the Unified Facilities Criteria standards. Jeff is licensed in 22 states as a Professional or Structural Engineer.

Back in the year 2000, the U.S. Department of Defense (DoD) was charged with incorporating antiterrorism protective features into the planning, design and execution of its facilities. The main document developed to meet this requirement is the Unified Facilities Criteria “DoD Minimum Antiterrorism Standards for Buildings” (UFC 4-010-01). The current version was published in October 2013. This document covers what is most commonly referred to as “blast” design.

All DoD inhabited buildings, billeting (military housing) and high-occupancy family housing projects are required to comply with this standard. The most common projects incorporating cold-formed steel framing are for the military branches (including National Guard and Reserve components). Notable exceptions are: low-occupancy buildings (11 occupants or fewer), transitional structures (with intended life cycles of five years or less), standalone retail establishments and parking structures. A complete list of excluded buildings types is located in chapter 1-9 of UFC 4-010-01.

General structural requirements for DoD projects are provided in the UFC 1-200-01 standard. The current model building code referenced is the 2012 IBC. Specific structural design criteria are also listed for all major military bases. UFC 4-010-01 specifically states that its requirements do not supersede the structural requirements of UFC 1-200-01. Basically, three lateral designs are required for all DoD projects: wind, seismic and blast.

The main design strategies employed by UFC 4-010-01 are to maximize standoff distance, prevent progressive collapse and minimize hazardous flying debris. Progressive collapse avoidance is addressed by UFC 4-023-03. The main criterion to note is that it is only required in structures of three or more stories in height.

standoff-distances-with-controlled-perimeter

UFC 4-010-01 tables B-1 and B-2 provide the conventional standoff distances and minimum standoff distances for a building based on its construction type and building category. The conventional standoff distance is where conventional construction may be used for building components other than windows and doors without a specific analysis of blast effects. The minimum standoff distance is the smallest permissible distance allowed regardless of any analysis or construction hardening.

standoff-distances-for-new-existing-buildings

conventional-construction-standoff-distances

To minimize hazardous flying debris, two basic components are addressed: typical wall framing and opening support framing. UFC 4-010-01 Table 2-3 provides the allowable height for cold-formed stud typical wall framing based on material, spacing, support conditions and supported weight.

conventional-construction-parameters

conventional-construction-parameters2

For both brick veneer and EIFS cladding, the maximum allowable height is 12″-0″.  Note that 50 ksi stud material is required to meet these requirements. There is no similar strength requirement for connections.

For framing that meets both the conventional standoff distance and allowable member height, NO further blast analysis is required. For framing that does not meet either the conventional standoff distance or allowable member height, additional blast analysis IS required. The support framing (head/sill/jambs) for windows and skylights ALWAYS requires additional blast analysis. Per section B-3.3.3 of UFC 4-010-01, the support framing for doors, glazed or solid, is not required to be analyzed for blast. Doors are designed to remain in their frames and not become hazards to building occupants. Sidelights and transoms that are included within the door assembly are also not required to be analyzed for blast. There are exclusions provided for unoccupied areas of buildings, such as exterior stairwells and exterior walkways. Personal experience with the U.S. Army Corps of Engineers Protective Design Center (USACoE PDC) has shown that unoccupied attic areas are also allowed to be excluded from the provisions.

Two “levels of protection” are provided for in the UFC 4-010-01. Only Low Level of Protection (LLOP) and Very Low Level of Protection (VLLOP) buildings are addressed. Low Level of Protection allows for moderate damage with collapse being unlikely and having the potential for serious but not fatal human injury. Very Low Level of Protection allows for heavy structural damage with progressive collapse unlikely and having serious human injury likely with potential fatalities. Any projects that require a higher Level of Protection designation must be referenced elsewhere. The project appropriate “Level of Protection” is provided in UFC 4-01-01 Tables B-1 and B-2.

UFC 4-010-01 allows for two basic analysis methods for performing blast design, static analysis and dynamic analysis. Static analysis can be performed with the aid of the Simpson Strong-Tie® CFS DesignerTM software, while dynamic analysis must be performed with the “Single-degree-of-freedom Blast Effects Design Spreadsheet” (SBEDS) obtained from the USACoE PDC. Generally, dynamic analysis will provide lighter members than static analysis.

Static Analysis Method

Static analysis of “punched” openings (framed with head and sill members and supported by jamb studs) is only allowed to be performed if the conventional standoff distance is met. Ribbon windows, aluminum curtainwalls, storefronts, etc., are required to be designed by the dynamic analysis method.  The “punched” window supporting structure is to be designed to account for the increased tributary area representing the area of the window and the walls above and below it.  These supporting elements must have moment and shear capacities greater than the calculated conventional wall capacities multiplied by the applicable tributary area increase.

illustration-of-tributary-width-valuesFor example, if the tributary area of the “punched” opening is three times the typical full-height stud spacing, three members are required for the jamb stud assembly. An alternate member with moment and shear capacities greater than or equal to three times the typical full-height members’ capacity can also be used.  UFC 4-01-01 section B-3.1.4.1 states that connection loads shall be determined based on the increase in member shear capacity. It makes a difference which members are chosen for the jamb stud assembly, as the connection must be designed for the shear capacity of that specific assembly. Per UFC 4-010-01 section B-3.1, the connectors themselves are designed using LRFD methods with a Load Factor of 1.0. The resistance factor for bending is allowed to be 1.0, while the resistance factors for other failure modes remain per the AISI code (Shear = 0.95). Per UFC 3-340-02 section 5-47, when LRFD values are not published for connectors, a value of 1.7 times the allowable strength is permitted. Published LRFD strengths already have the appropriate resistance factors incorporated. Simpson Strong-Tie publishes LRFD values for all of its connectors.

Dynamic Analysis Method

As mentioned above, dynamic analysis is performed with the SBEDS spreadsheet tool provided free of charge by the USACoE PDC. There is a simple approval process to undergo in order to receive a software key for the program. The general inputs for the program are fairly straightforward. There is a list of standard preset stud shapes that can be selected. The list is not comprehensive, but shape property inputs are provided for “user defined” members.

SBEDS General Input

SBEDS General Input

The SBEDS spreadsheet is formatted to analyze single-span wall framing. For analyzing opening support framing, the stud spacing and supported weight will have to be adjusted. Per PDC TR-10-02, the stud spacing is to be figured the same way as in the static analysis method. The spreadsheet analyzes the entire wall at one supported weight, so this will also have to be adjusted to account for the differing weights of the building cladding and glazing, providing an average support weight. For EIFS cladding, all weights are typically assumed to be the same (6 psf actual). For brick veneer (46 psf actual), the supported weight must be reduced to account for the lower weight of the glazing (6 psf actual). The wall span will need to be adjusted to the actual length of the head and sill members.

The blast parameters are input as “Charge Weight & Standoff.”  The appropriate project explosive weight is referenced from the UFC 4-010-02 standard. This publication is authorized only to U.S. Government agencies and their contractors. Approval must be obtained from the USACoE PDC to obtain this document. The standoff distance is entered as the project-specific standoff distance. The Incidence angle can be calculated as the arc tangent (ATAN) of the height to the center of the opening divided by the actual standoff distance. The remaining typical blast parameter inputs are shown below.

SBEDS Blast Parameters Input

SBEDS Blast Parameters Input

The typical response criteria inputs are shown below. Typically stud framing is required to be “connected top and bottom.” There is an option to select “Top Slip Track,” but personal experience has shown that this option does not pass the analysis. There are two options provided with the “Level of Protection” type. “Primary” would be selected for load-bearing projects, while “Secondary-NS (Non-Structural)” would be selected for curtainwall-type projects.

SBEDS Response Criteria Input

SBEDS Response Criteria Input

For the Solution Control inputs, the main check is to verify that the inputted time step matches the calculated recommended time step. The calculated value will change when various other inputs are changed. The “% of Critical Damping” can be entered as 5% for CFS framing, per the spreadsheet cell comment. The “Initial Velocity” is entered as zero, also per the spreadsheet cell comment.

SBEDS Solution Control Input

SBEDS Solution Control Input

Connections are designed to meet or exceed the “Peak Reactions Based on Ultimate Flexural Resistance” value given in the SBEDS output. Per UFC 4-010-01 section B-3.1, design is done per LRFD methodology with Load Factors equal to 1.0. The Resistance Factor for bending is allowed to be 1.0, while the Resistance Factors for other failure modes are per the AISI code (Shear = 0.95). Published LRFD strengths already have the appropriate resistance factors incorporated. The conservative assumption would be that shear controls the failure, and an increase in the LRFD Resistance Factor is not appropriate.

SBEDS Reactions Output

SBEDS Reactions Output

Per UFC 3-340-02, there are additional increases in connection strength that can be taken for dynamic blast design. The Strength Increase Factor (SIF, a.k.a. Static Increase Factor or Average Strength Factor) considers that yield stresses for all CFS materials provided are typically higher than the minimum yield stresses required by ASTM A446 (replaced by ASTM A653) steel. Per section 5-12.1, the SIF is listed as 1.21 for all CFS framing but only applies to the yield stress (Fy). Any calculations involving the ultimate stress (Fu) value are not allowed to be increased. The SIF also does not apply to fasteners (screws, bolts, PAFs, welds, etc.). The Dynamic Increase Factor (DIF) considers the strain-rate effects from rapid blast loading. Per section 5-34.2, this increase is listed as 1.10 for all CFS framing and per UFC 4-0-010-01 section 4-7, 1.05 for welds. Conservatively, it is assumed that the DIF equals 1.0 for all other fasteners (screws, bolts, PAFs, etc.).

Dynamic Connection Strength = (LRFD Strength)*(SIF)*(DIF)

For example, per Table 1 given below (reference Simpson Strong-Tie® engineering letter L-CF-CWCLRFD15), the SCB45.5 Bypass Slide Clip (3 screws to 16 ga. material) has a Dynamic Connection Strength = (2,025)*(1.0)*(1.10) = 2,227.5 lb., meeting the required reaction shown above.

scs-bypass-framing-slide-clip-connector

Again per UFC 3-340-02 section 5-47, when LRFD values are not published for connectors, a value of 1.7 times the allowable strength is permitted.

Dynamic Connection Strength = 1.7*(Allowable Strength)*(DIF)

Simpson Strong-Tie publishes LRFD values for all of its connectors.

References:

UFC 4-010-01:  February 9, 2012 (Change 1 – October 1, 2013)

UFC 3-340-02:  December 5, 2008 (Change 2 – September 1, 2014)

PDC-TR 06-01:  December 2012

PDC TR-10-02:  April 2012

https://pdc.usace.army.mil/

 

Building with Habitat for Humanity in Portugal

portugal-habitat-for-humanity-group

Five Simpson Strong-Tie employees had the opportunity to participate in a week-long Habitat for Humanity build in the small town of Amarante, Portugal, in late April. The group was originally scheduled to work on a Habitat project in Nepal late last year as part of Habitat’s Jimmy and Rosalynn Carter Work Project (CWP), but following the signing of a new constitution and civil unrest in the country, the project was canceled.

The company decided to allocate the funds for the CWP to Habitat’s Global Village program, allowing these employees to help renovate and remodel the older home of a widowed mother (Doña Margarida Ribiero) and daughter (Sonia) living in the Portuguese countryside.

The group, along with five other volunteers from the U.S., ranging from 29 to 76 years in age, was the first to start work on the 30-plus-year-old home. Alan Hanson, one of the Simpson Strong-Tie participants, was asked to share his thoughts about the experience.

My journey to Portugal began with a one-week vacation in the country with my wife, Holli. We traveled from Lisbon to Sintra, and then to Porto, the capital of port wine. It was a wonderful way to get to know the country. We met a number of friendly, unreserved people throughout the area. Language wasn’t a real barrier, since many locals spoke English. We toured cities, beaches, castles, palaces and other points of interest.

Holli flew out Saturday morning, so fellow Simpson Strong-Tie employee Rick Reid and I explored Porto for the rest of the day. We took a tour of the city, tasted some port wine, and had great meals. We met the other employees from Simpson Strong-Tie (Desiree Aquino, Phil Taylor, and Doug Melcolm) that night and had a seafood dinner near the water.

Rick Reid (l) and Alan Hanson at the jobsite.

Rick Reid (l) and Alan Hanson at the jobsite.

On Sunday morning, we met the rest of the volunteers from the U.S. as well as Florbela, our Habitat for Humanity representative. We took the 45-minute trip to Amarante, the city where the build would take place and had the afternoon free to explore. We were all excited about getting started on the build!

On Monday morning, we were taken to a rural part of Amarante where we met Doña Margarida, the homeowner, and Rogerio, the Habitat for Humanity superintendent. The house was very old and in need of many renovations. It had been added onto several times and was not very functional. Our work would entail remodeling rooms (a bedroom would become a living room), creating a hallway where none existed, and creating more space throughout the home.

L to R: Phil Taylor, Doug Melcolm and Alan Hanson hard at work.

L to R: Phil Taylor, Doug Melcolm and Alan Hanson hard at work.

We hit the ground running, cutting two new doorways into the granite and block, leveling out the irregular floors, filling in doorways that could no longer be used, patching various holes and openings, digging a ditch for the waste lines, removing paint and concrete from the granite interiors, and making many other improvements to the home throughout the build week. As a thank you at the end of each day, Doña Margarida served  us homemade red and “green” wine (the vino verde is a lightly carbonated white wine — delicious) with smoked ham and sausage. Despite the language barrier (she didn’t speak English), we could see that she was very grateful for our hard work, and she many times worked alongside us.

Alan Hanson fills in a former doorway.

Alan Hanson fills in a former doorway.

On Thursday we had our R&R day. We traveled to Guimaraes, about 45 minutes away. We had the opportunity to tour the “birthplace of Portugal” castle and palace and learn a lot of early Portuguese history. Friday came very early and we were off to Doña Margarida’s house again. We tore out another wall, finished fixing a few more openings, patched various holes in walls and leveled another floor.

Our last day at Doña Margarida’s house was actually only half a day on Saturday. We laid block in the door we removed earlier, filled in the floor where we tore out the wall, and made finishing touches to the patching on the other doors we filled in, as well as the hole from the wood stove. We accomplished a TON of work in 4½ days! We were told that we had finished ahead of schedule and completed more projects than were expected. We all had lunch together, including the family. In true Simpson Strong-Tie fashion, we had gifts for the family and our superintendent. We gave Rogerio a Simpson Strong-Tie-branded knife and sweatshirt and Doña Margarida a comforter and a wooden bowl that Phil made. He is quite a craftsman and did a wonderful job on it! Tears were shed, and we loaded into the van for the last time in Amarante. I took a nap when we got in because I was exhausted!

Doug Melcolm (l) and Rick Reid mixing cement for floor leveling.

Doug Melcolm (l) and Rick Reid mixing cement for floor leveling.

On Sunday, we left Amarante, heading to Porto. We attended a port wine tasting and took in a tour of the city. April 25 is “Freedom Day” in Portugal and marks the Carnation Revolution, when the military dictatorship was overthrown in 1974 with very little bloodshed, so there were fireworks at midnight and we had an incredible view. What a great way to end our trip to Portugal!

P.S. The complete renovation of the house is expected to be done in July, and we all can’t wait to see the home finished.