Paul McEntee

About Paul McEntee

A couple of years back we hosted a “Take your daughter or son to work day,” which was a great opportunity for our children to find out what their parents did. We had different activities for the kids to learn about careers and the importance of education in opening up career opportunities. People often ask me what I do for Simpson Strong-Tie and I sometimes laugh about how my son Ryan responded to a questionnaire he filled out that day:

Q.   What is your mom/dad's job?
A.   Goes and gets coffee and sits at his desk

Q.   What does your mom/dad actually do at work?
A.   Walks in the test lab and checks things

When I am not checking things in the lab or sitting at my desk drinking coffee, I manage Engineering Research and Development for Simpson Strong-Tie, focusing on new product development for connectors and lateral systems.

I graduated from the University of California at Berkeley and I am a licensed Civil and Structural Engineer in California. Prior to joining Simpson Strong-Tie, I worked for 10 years as a consulting structural engineer designing commercial, industrial, multi-family, mixed-use and retail projects. I was fortunate in those years to work at a great engineering firm that did a lot of everything. This allowed me to gain experience designing with wood, structural steel, concrete, concrete block and cold-formed steel as well as working on many seismic retrofits of historic unreinforced masonry buildings.

What You Need to Know About Differences in Wind-Speed Reporting for Hurricanes

This week’s post was written by Darren Conrad, PE. Engineering Manager, Truss at Simpson Strong-Tie.

With Hurricane Irma wrapping up, the cleanup after Hurricane Harvey’s devastation underway in Houston and more big storms already churning in the Atlantic, it seems like a good time to discuss hurricanes and high wind. There is a great deal of good information out there to help us better understand hurricanes and their impact on people, structures and other property. To improve awareness of wind speeds and their measurement, this article will discuss a commonly misunderstood aspect of hurricane wind-speed reporting.

When a storm is approaching, you will hear meteorologists report wind speeds. They often refer to storm categories. These categories attempt to generalize expected damage to structures based on the wind speed of the storm. The wind speed for a given storm is a measure of the severity of the storm and the danger it poses to life and property. But how do meteorologists determine the wind speed that they are reporting? It seems so concrete and certain, but anyone who has been outside during a storm or windy day knows that wind isn’t constant at any one location over a period of time. It varies continuously in magnitude and direction over time. So how can something so variable be the subject of knowledge that is precise enough to be useful? How do we understand wind-speed measurements and make sure that when comparing them we are doing so in such a way that they are comparable? That is a great question.

The good news is that even though wind is variable, we have a commonly accepted way to measure wind speed and know something about a wind field or event that is occurring at a time and place. This is done by averaging measured wind speeds over specified lengths of time, or picking the highest average wind speed that occurs for a specified averaging interval from a longer period of time. A great resource for understanding how wind speeds are measured and reported can be seen here. From this explanation, it can be seen that a reported wind speed is meaningless without a specified averaging time. The shortest averaging intervals will yield the highest reported wind speeds. The longer averaging times will capture more peaks and lulls and yield lower reported wind speeds. The most common averaging intervals used to report wind speeds are three seconds, one minute and two minutes. Some countries even use a ten-minute averaging interval for reporting wind speeds. So the question arises, which average is correct? And the answer is, none of them and all of them. They are just different ways of looking at measured wind data. That is not very comforting, but one thing we can know is that none of them can be truly interpreted or compared without understanding this idea of averaging time. To make it more confusing, meteorologists and building codes do not use the same averaging interval when reporting or specifying wind speeds. This can lead to misunderstandings.

In general, you will hear meteorologists report sustained wind speeds when covering an approaching hurricane. They might also mix in some peak gusts, but for the most part they focus on sustained wind speeds. Sustained wind speeds for tropical cyclones use a 60-second averaging time. Sustained wind speed is also used by the Saffir-Simpson scale to roughly quantify the likely damage that the wind from a storm might cause typical buildings and other structures. There are criticisms of the accuracy of the Saffir-Simpson scale method, but it is widely used by the public to generalize about the severity of tropical cyclones; therefore, it is likely that the public might and commonly does attempt to compare reported sustained wind speeds to building-code-specified three-second-gust wind speeds to determine if their house or structure will withstand the storm. There is danger in making that comparison.

We need to be careful when comparing the reported sustained wind speed for a storm with the three-second-gust design wind speeds referenced in building codes and design standards. They are not the same and need to be converted before they can be compared for equivalence. After seeing the following example, one could easily see the possibility of the public or a public official comparing the sustained wind speeds reported by the weatherman to the wind speeds used by building codes and design standards and drawing conclusions that may underestimate the force and effect of the storm.

Let’s take a hypothetical situation where a building jurisdiction has adopted a wind speed of 130 mph three-second-gust design wind speed for structures built in that jurisdiction. There are various methods to convert wind speeds between different averaging times, and many factors that may need to be considered when doing that. One method for converting is the Durst method referenced in ASCE 7. Another more recent method recommended by the World Meteorological Organization provides a pretty straightforward conversion between sustained wind speed and three-second-gust wind speeds for near-surface applications. So for the sake of simplicity, we will use it for this example. If we convert a reported sustained wind speed of 130 mph to a three-second-gust average wind speed using this method, it equates to a three-second-gust wind speed for Off-Sea of 160 mph (Off-Sea is appropriate for an approaching hurricane). The adopted130 mph three-second-gust wind speed converts to 105 mph sustained wind speed. This difference could lead individuals in the path of the storm to underestimate its severity if they are not aware of the difference between averaging intervals for wind speeds. They could see the sustained wind speed of 130 mph being reported by the weather service when the storm is over open water and assume that their structure, or structures in their jurisdiction, will stand up fairly well. This would be a serious underestimate, since those structures would need to be designed to resist a 160 mph three-second-gust wind speed using ASCE 7 in order for that to be true. To say that a different way, one might think that their structure was designed for a Category 4 storm (130 mph sustained), when in fact it was actually designed for a Category 2 storm (105 mph sustained) using the Saffir-Simpson scale. Hurricane Irma at its maximum sustained wind speed of 185 mph would equate to a 227 mph three-second-gust wind speed using this conversion method. From a roof anchorage, lateral design and load path design perspective, the difference between 130 mph and 160 mph can be substantial, especially when the building is located on flat open terrain where Exposure C or Exposure D are appropriate assumptions for the design.

There is a lot more background and detail to this very complicated discussion, but the general point is to know your averaging times when comparing reported wind speeds, so as not to underestimate a storm’s force. If a storm is headed your way, hopefully you have already selected the proper hurricane tie for your structure; you have a well-defined and properly designed continuous load path; and you are protecting your exterior openings from windborne debris. Remember, the objective is not to protect the window or door product itself. Unless you are in the insurance business, you are preventing the breach of the opening to keep wind from pressurizing the structure, increasing loads on the structure and potentially causing catastrophic failure.

Know how to secure your structure against high winds, and be safe.

What Structural Engineers Need to Know About the New OSHA Silica Dust Standards

This week’s post was written by Todd Hamilton, PE. ICI Field Engineer at Simpson Strong-Tie.

In March of 2016, the United States Department of Labor issued new OSHA standards on how crystalline silica dust should be handled in various workplaces including within the construction industry. The changes are intended to limit workers’ exposure to and inhalation of silica dust on the jobsite. These regulations will replace the current standard, which was issued in 1971. Compliance with the new rules will be required on construction jobsites starting September 23, 2017, and will be enforced through OSHA from that time forward.

Crystalline silica is a naturally occurring mineral that is found in sand, sandstone, shale and granite, and since some of these materials can be found on jobsites on their own or as a component of a construction material such as concrete and mortar, changes to how workplaces contain and dispose of silica dust will affect the way our industry operates. Some of the processes performed on a construction jobsite that can expose workers to crystalline silica dust are drilling, grinding and sawing concrete and masonry; jackhammering; and sand blasting. Inhaling crystalline silica can lead to long-term illness and early death. Illnesses caused by inhaling silica dust include silicosis, lung cancer and chronic obstructive pulmonary disease (COPD).

The new OSHA standards do the following:

  • Reduce the permissible exposure limit (PEL) for respirable crystalline silica to 50 micrograms per cubic meter of air, averaged over an eight-hour shift. Previous PEL was 250 micrograms per cubic meter of air, averaged over an eight-hour shift.
  • Require employers to use engineering controls (such as water or ventilation) to keep worker silica exposure within the PEL; provide respirators when engineering controls cannot adequately limit exposure; limit worker access to high-exposure areas; develop a written exposure-control plan; offer medical exams to highly exposed workers; and train workers on silica risks and how to limit exposure.
  • Provide medical exams to monitor highly exposed workers and give them information about their lung health.
  • Provide flexibility to help employers – especially small businesses – protect workers from silica exposure.

Beyond that, the OSHA standards offer three methods an employer can use to demonstrate compliance:

  • A list of common jobsite activities and the required engineering control method, plus the additional respiratory protection (if needed) to meet the 50 PEL.
  • For activities/protection methods not included in the preceding list, the use of credible third-party assessment is allowed to show that the exposure level is < 50 PEL. This includes data from universities, trade associations, etc. that can be used provided they are based on conditions similar to, or more inherently hazardous than, the employer’s current conditions.
  • Manufacturers can generate their own data on their workers’ exposure level using an air-monitoring system.

Visit the US Department of Labor’s OSHA website for more in-depth information and useful links.

All these new requirements directly affect contractors onsite, but it’s also important for structural engineers to have an understanding of them. Beyond that, there are some key things that structural engineers should consider when specifying products such as post-installed anchors where the installation process includes drilling concrete, which does generate crystalline silica dust. Back in 2006 when Acceptance Criteria 308 was adopted, it made a lot of changes to how adhesive anchors are tested and qualified, but it also required that the manufacturers’ printed installation instructions (MPII) be published as part of the code report. This tied the published data in the code report to the installation procedures that could be used to achieve those data. And with the adoption of ACI 335.4 in 2015, the requirement for the MPII to be included in the code report continues. Therefore, with MPIIs being a part of the code report, a structural engineer needs to understand the importance of having an installation method that accounts for silica dust generated during the installation process and verify that the MPIIs include an installation process which utilizes a high-efficiency dust-collection system.

To get a better understanding of how these high-efficiency dust-collection systems work, let’s look at the Simpson Strong Tie Speed Clean™ DXS dust extraction system. This system was developed through a partnership with Bosch. Here is a video that clearly explains the system and its method:

So as structural engineers, we should consider what the MPII says when we are specifying a product.  Does it have an installation procedure, such as the Simpson Strong-Tie/Bosch DXS, that properly controls the crystalline silica dust generated? Does the code report lock the contractor into a specific brand of vacuum? Some code reports may only allow the use of a specific brand and model of vacuum and drills that can be used, which in some cases could require the purchase of new tools.

The new OSHA standard is very beneficial to installers because it will protect them from potential long-term health hazards. When it comes to anchor installation, the new regulations, along with compliant technologies such as the Speed Clean DXS, will eliminate the blow-brush-blow installation method that creates a lot of harmful airborne crystalline silica dust and is also often a source of installation error. Even though it will take time and effort for contractors and engineers to come to grips with the full ramifications for their projects, the new regulations are a positive development for the construction industry.

Q&A About Advanced FRP Strengthening Design Principles

Our thoughts go out to everyone affected by Hurricane Harvey and this disaster in Texas. To help with relief efforts we are donating $50,000 to the American Red Cross Disaster Relief Fund. Employees at our Houston warehouse are safe and the employees from our McKinney branch will be doing as much as they can to help with relief efforts.

This week’s post was written by Griff Shapack, PE. FRP Design Engineer at Simpson Strong-Tie.

On July 25, 2017, Simpson Strong-Tie hosted the second interactive webinar in the Simpson Strong-Tie FRP Best Practices Series, “Advanced FRP Design Principles,” in which Kevin Davenport, P.E. – one of our Field Engineering Managers – and I discussed the best practices for fiber-reinforced polymer (FRP) strengthening design. The webinar examines the latest industry standards, proper use of material properties, and key governing limits when designing with FRP and discusses the assistance and support Simpson Strong-Tie Engineering Services offers from initial project assessment to installation. Watch the on-demand webinar and earn PDH and CEU credits here.

During the live webinar, we had the pleasure of taking questions from attendees during the Q&A session. Here is a curated selection of Q&A from that session:

While I see how you improve the flexural capacity of a beam, how do you increase its shear capacity to match new moment strength?

ACI 440.2R recommends checking the element for shear if FRP is used to increase flexural strength. U-wraps can be used to provide shear strengthening of a beam.

Are there any “pre-check” serviceability checks (deflection, vibration, etc.) similar to the ACI 440 strength check that you recommend when considering the use of FRP?

ACI 440.2R contains a few serviceability checks on the concrete, rebar and FRP that can be performed once you have designed a preliminary strengthening solution.

Are these strengthening limits for gravity loads only? What about for a seismic load combination?

Yes, the strengthening limits are just for gravity loading. Seismic loading does not require an existing capacity check as it is highly unlikely for the FRP to be damaged during a lateral event.

Did Simpson Strong-Tie perform load tests on FRP repaired timber piles?

We are currently testing our FRP products as applied to timber piles at West Virginia University. We have also implemented a full-scale testing program on damaged timber piles at our own lab using our FX-70® fiberglass jacket system.

Will any of your seminars cover FRP and CMU? Seismic applications?

Yes, these are topics we are considering for future webinars.

The 0.6 limit for compressive stress can be very limiting. Can this value be evaluated on a case-by-case basis? The Euro code allows higher limits on compressive stress?

Our designers will report this value, along with the section addressing this check from ACI 440.2R, to the EOR and discuss whether the EOR would like to proceed with the FRP strengthening on his or her project.

Which engineer (EOR or Delegated Engineer) is responsible for specifying the scope of special inspections?

We provide a draft FRP specification to the EOR to use in their final determination of the special inspection requirements for a project. It’s in the owner’s best interest to hire a qualified special inspection agency on an FRP installation project.

For complete information regarding specific products suitable to your unique situation or condition, please visit or call your local Simpson Strong-Tie RPS specialist at (800) 999-5099.

Advanced FRP Design Principles

In this free webinar we will dive into some very important considerations including the latest industry standards, material properties and key governing limits when designing with FRP.

Why Fire-Rated Hangers Are Required in Type III Wood-Frame Buildings

One of the first mixed-use designs I worked on as a consulting structural engineer was a four-story wood-frame building over two levels of parking. Designing the main lateral-force-resisting system with plywood shearwalls was a challenge for this project that required new details to meet the high design loads. The high overturning forces were resisted using the Simpson Strong-Tie® Strong-Rod™ anchor tiedown system, which incorporates high-strength rods, bearing plates and shrinkage compensation devices.

At the time, these construction details using Strong-Rod systems and high- load shearwall diaphragms were new, innovative concepts. However, this method of construction rapidly became commonplace as intense demand for housing fueled the trend toward denser, mixed-use developments in downtown areas. I discussed the trend toward taller, denser developments in this post.

A more recent trend in wood-frame construction has been the shift to Type III wood-frame construction, which allows designs up to five stories. To help educate designers on some of the nuances of Type III wood-frame construction and provide guidance on meeting the associated code requirements, we reached out to Bruce Lindsey, the South Atlantic Regional Director for WoodWorks. Bruce wrote a two-part article entitled Fire Protection Considerations with Five-Story Wood-Frame BuildingsPart 1 and Part 2. This post will go into more detail on connecting the floor system to the two-hour fire-rated exterior walls and discuss our new DG series joist hangers that are specially designed for this application.

As a structural engineer, I was aware of fire requirements mostly because I needed to account for the weight of fire sprinklers, added layers of gypsum board, fire-proofing on steel, or concrete slab thickness in my design. While the increased loads can affect the vertical- and lateral-force-resisting systems, I seldom needed to change the details and connections in my designs.

The exterior walls in Type III wood-frame construction require fire-retardant-treated (FRT) lumber with two layers of gypsum board to provide a two-hour fire rating. There are many established fire-rated floor and wall assemblies available. The challenge, as discussed in Part 2 of Mr. Lindsey’s post, is detailing the intersections between the floor and wall systems. Connecting the floor framing to the exterior walls in Type III construction requires careful detailing to transfer the vertical loads without compromising the two-hour fire rating of the wall assembly.

Below is a summary of some of the possible fire wall connections as discussed in Mr. Lindsey’s previous blog posts.

A solid header on top of the wall that has adequate thickness to provide a two-hour rating through its charring capability. The cost and availability of solid rim board material should be considered.

A continuous 2x ledger or blocking to provide one hour of fire resistance. The second hour of resistance is provided by ceiling gypsum board. Some jurisdictions object to this detail over concerns about a fire starting within the floor cavity.

Some jurisdictions interpret the two-hour exterior wall requirement as applying only to the wall and not the floor. In such jurisdictions, designers can sometimes use standard platform framing in Type III construction.

A variation where the ledger can be installed over two layers of gypsum board. Simpson Strong-Tie has tested and published values for ledger connections over gypsum board using our SDWH and SDWC fasteners. The testing of these fasteners was discussed in our Spanning the Gap post from earlier this year.

In this detail, one hour of fire resistance is provided by a single layer of gypsum board running the full height of the wall with a hanger installed over the gypsum board. The second hour of resistance is provided by the ceiling gypsum board.

A variation of this detail is our DU/DHU series of drywall hangers that are installed over two layers of gypsum board. These were addressed in this post.

Designs using hangers or ledgers installed over gypsum board can create construction sequencing challenges. Since the gypsum board needs to be installed before the framing, the contractor will need to coordinate between the trades.

A new solution that eliminates sequencing issues for Type III construction is our series of DG/DGH/DGB fire wall hangers, which are designed to easily install on a two-hour wood stud fire wall. These top-flange hangers feature enough space to allow two layers of 5/8″ gypsum wall board to be slipped into place after the framing is complete.

These new fire wall hangers were tested in accordance with ICC-ES AC13 and ASTM D7147, which I discussed in How We Test – Part I: Wood Connectors. These standards do not explicitly detail how to test a hanger installed on a wood stud wall, so we collaborated closely with ICC Evaluation Services to develop a test setup that meets the intent of the standards.

All three of our new fire wall hangers have been tested according to ASTM E814 and received F (flame) and T (temperature) ratings for use on either or both sides of the fire wall. These ratings verify that the DG/DGH/DGB hangers do not reduce the two-hour fire wall assembly rating.

Our testing and load tables address installation of 2×4 or 2×6 stud walls constructed of Douglas fir (DF), southern pine (SP), spruce-pine-fir (SPF) or hem-fir (HF) lumber.

DG Hanger

DGH Hanger

DGB Hanger

Drywall Notch Detail

If you are working on a Type III wood-frame construction project, check out our Fire Wall Solutions page, which has product profiles with links to further information about the new DG hanger series, as well as our DU/DHU series of drywall hangers and fire wall fastener solutions using Strong-Drive® SDWS Timber screws.

Meet the First Simpson Strong-Tie Engineering Excellence Fellow with Build Change

Introducing James P. Mwangi, Ph.D., P.E., S.E. – our first annual Simpson Strong-Tie Engineering Excellence Fellow with Build Change. James Mwangi will write a quarterly blog about his experience throughout the Fellowship.

I’m delighted to have been asked to contribute this post and feel honored to be the first-ever Simpson Strong-Tie Engineering Excellence Fellow with Build Change. It’s my hope that this post will inform you about my professional background, why I applied to the Fellowship and how I think the Fellowship can benefit people and the structures they live, work and go to school in.

I grew up in Kenya and went through my basic education and my undergraduate coursework in civil engineering there. I worked for the government of Kenya as a junior roads engineer before proceeding to Nigeria for my masters in structural engineering. I returned to Kenya and worked for the government as a junior structural engineer. I joined the faculty of civil engineering shortly after that as a lecturer.

Central Kenya – including Nairobi, where I lived – is subject to moderate seismic activity, and I felt several earth tremors growing up. This puzzled me from a very young age, and I always wanted to learn how buildings behaved during these events. Since I didn’t acquire this understanding during my undergraduate or my master’s studies, I headed to California in 1988 for doctoral work in structural engineering at UC Davis. I didn’t have to wait long for first-hand experience of the effects of major seismic activity, because the Loma Prieta earthquake happened hardly a year after my arrival. This earthquake helped shape my career by giving me the opportunity to visit the destruction sites in the San Francisco Bay Area. Through my professors at Davis, I led a very successful Caltrans-funded project on full-scale testing of repair methods (steel jacketing and epoxy injection) of pile extensions that we harvested from a bridge that collapsed along Highway 1 in Watsonville. From completing my doctoral studies at UC Davis, I joined Buehler and Buehler Structural Engineers (B&B) in Sacramento. The 1994 Northridge earthquake happened while my steel moment frame school building in Milpitas was undergoing review by DSA. When we realized that no DSA engineer would sign off on this system from the field observation of the behavior of steel moment frames, I had to redesign the building over a weekend with a steel-braced frame system to meet the client’s schedule. At B&B, I was able to design building structures of wood, steel, masonry and concrete ranging in use from public schools, hospitals, and other essential service facilities to commercial buildings.

Since 2003, I have been a university professor, having joined the Architectural Engineering department (ARCE) at Cal Poly, San Luis Obispo, where I teach both undergraduate and graduate design courses in timber, masonry, steel and concrete. As a certified disaster safety worker in the governor’s office of emergency services, I have participated in the Structural Assessment Program in Paso Robles following the 2003 San Simeon earthquake; in Port-au-Prince following the Haiti earthquake of 2010; in Napa following the Napa earthquake of 2014; and in Kathmandu following the Nepal earthquake of 2015. I have contributed my experience from these deployments to the profession by serving in the technical activities committee of The Masonry Society (TMS) and also representing the seven western states in the TMS Board of Directors.

After my two-week building assessment in Haiti in 2010, I returned to Haiti for a year with the Mennonite Central Committee (MCC), participating in capacity building and safe building-back-better workshops targeting homeowners, contractors, engineers, architects and government officials. It was during this time that I first met Build Change as we shared information on our projects in Haiti. Since then, I’ve led a group of ARCE students to Haiti and Nepal every summer, and we have made it part of our itinerary to visit Build Change projects in each of the countries.

As a structural engineer, I have used Simpson Strong-Tie (SST) products throughout my career here in the US. I’ve not only used the SST products to teach my timber and masonry design courses at Cal Poly but have also supervised ARCE senior projects where we have used SST products. One of these projects led to a naming of one of our design laboratory rooms as The Simpson Strong-Tie Laboratory. It was only natural, then, that when I saw the advertisement for the Simpson Strong-Tie Engineering Excellence Fellowship, I couldn’t believe that two organizations with whom I have worked so closely as an individual and as a teacher were teaming up to create such a great opportunity. My familiarity with the two organizations, along with the fact that I already had a sabbatical leave approved from Cal Poly for the year of the Fellowship, made it a must for me to apply for the Fellowship. Natural disasters only cause human devastation where naturally occurring events (earthquakes, hurricanes, etc.) are not mitigated. The missions of the two organizations – BUILD Disaster-Resistant Buildings and CHANGE Construction Practice Permanently, alongside Simpson Strong-Tie’s No-Equal commitment to creating structural products that help people build safer, stronger homes and buildings –added to my desire to apply for the Fellowship.

Build Change projects involve helping local governments provide safe school buildings and other structures so their communities can better withstand damaging natural events, whether hurricanes, tornadoes or earthquakes. Where possible, we’ll use Simpson Strong-Tie products for the repair or retrofit of roofs, walls and anchorage. Build Change currently has projects in Indonesia, the Philippines, Nepal, Haiti and Colombia, all of which are located in areas susceptible to high winds and earthquakes. Indonesia is the fourth most populous country in the world. It’s my hope that I’ll be able to participate in projects in each of these countries, and I certainly believe that Build Change and Simpson Strong-Tie together can help millions of people live in better structures, built from better local, sustainable materials, which will be safe from strong winds and earthquakes.

If you’d like more information about the fellowship or my involvement over the next year, I can be reached at

Revisiting Stainless-Steel Nail Calculations . . . .

This week’s post was written by Bob Leichti, Manager of Engineering for Fastening Systems.

Those of you who have been following the Simpson Strong-Tie SE Blog for a while may recall our 2013 blog post on the withdrawal resistance of stainless-steel nails. There have been several developments relating to that subject since that blog was posted, and we want to help you catch up.

First, the National Design Specification for Wood Construction (NDS) was revised in 2015. In the 2015-NDS revision, a new chapter 10, Cross-Laminated Timber, was created,, moving Dowel-Type Fasteners from Chapter 11 to Chapter 12. Every place in the original blog post where there is a snip of the NDS, you will find the same information in NDS-2015 Chapter 12. Did you know that you can download a free, view-only copy of the NDS from the American Wood Council at

Second, after we published our blog post about stainless-steel nail withdrawal, a journal paper was published about withdrawal resistance of stainless-steel nails. This paper has all the nitty-gritty related to withdrawal resistance and bending yield strength for smooth-shank stainless-steel nails: Ramer, D.R. and Zelinka, S.L. (2015). “Withdrawal Strength and Bending Yield Strength of Stainless Steel Nails,” Journal of Structural Engineering, American Society of Civil Engineers, Vol. 141, no. 5, 7 pp. (DOI: 10:1061/ASCE)ST.1943-541X.0001088).

Third, the NDS has been through another revision cycle and will soon have a 2018 copyright date. The chapter on dowel-type fasteners has some significant revisions that we will discuss in a blog post when the NDS-2018 is published later this year. SPOILER ALERT: NDS-2018 has a new withdrawal function for smooth-shank stainless steel nails.

Stay tuned!

The Cold-Formed Steel Construction Catalog is HOT off the press!

The SE Blog is taking some time off for the 4th of July holiday this week. However, we’ve just released the 2017 edition of our Connectors for Cold-Formed Steel Construction catalog – order a hard copy to be mailed to your office or download a PDF copy and start using it today!

Connectors For Cold-Formed Steel Construction

The C-CF-2017 is a 308-page catalog including specifications, load tables and installation illustrations for our cold-formed steel connectors and clips, helping you easily specify and install in commercial curtain-wall, mid-rise and residential construction.

How Heat Treating Helps Concrete Anchoring Products Meet Tougher Load Demands

Joel Houck is a senior R&D engineer for Simpson Strong-Tie’s Infrastructure-Commercial-Industrial (ICI) group based out of the new West Chicago, IL location. He has spent the last 17 years with Simpson developing new mechanical anchors and adhesive anchor components, as well as developing a lot of the lab equipment required to test these products. This experience has given him extensive knowledge and insight into the concrete anchor industry, especially when it comes to the proper function and performance of anchors. Joel is a professionally licensed mechanical engineer in the state of Illinois.

There’s a saying in Chicago, “If you don’t like the weather, just wait fifteen minutes.” That’s especially true in the spring, when temperatures can easily vary by over 50° from one day to the next. As the temperature plunges into the blustery 30s one evening following a sunny high in the 80s, I throw my jacket on over my T-shirt, and I’m reminded that large swings in temperature tend to bring about changes in behavior as well. This isn’t true just with people, but with many materials as well, and it brings to mind a thermal process called heat treating. This is a process that is used on some concrete anchoring products in order to make them stronger and more durable. You may have heard of this process without fully understanding what it is or why it’s useful. In this post, I will try to scratch the surface of the topic with a very basic overview of how heat treating is used to improve the performance of concrete anchors.

According to the ASM Handbook: Heat Treating, heat treatment is a process of heating and cooling a solid metal or alloy in such a way as to obtain desired conditions or properties.1 In practical terms, metals (usually steel in the case of most concrete anchors) are heat treated in order to improve their properties in some way over their base condition. When steel wire is formed into the complex shapes of anchors during the manufacturing process, the steel needs to be soft and formable; however, it is often beneficial to the performance of the final anchor product to be much harder and stronger than the base steel from which it’s formed. That’s where heat treating comes into play. By heating and cooling soft steel in a controlled manner, changes are made to the crystal structure of the steel in order to improve mechanical properties such as hardness, toughness, strength or wear resistance. Although the steel undergoes very complex microstructural changes during the heat treatment process, the end result is fairly straightforward – the once soft steel becomes harder and stronger as dictated by the heat treating process. As concrete anchors become more and more complex in order to meet the needs of building codes and designers, heat treating is becoming a more common and necessary component of high-strength anchors.

Figure 1. Steel microstructures: (a) soft steel example; (b) heat treated steel example.2

Depending on the desired results, there are many different types of heat treating processes that can be considered. The type of heat treatment and the parameters that are used can be customized for the steel type and the specific anchor application. There are several different types of heat treatments that are typically used for anchors. Two of the most common types are through hardening (also called neutral hardening) and surface hardening (also called case hardening).

Figure 2. Fasteners entering a heat treating furnace.3

Through hardening changes the mechanical properties (hardness, strength, ductility, etc.) of the steel without affecting its chemical composition. In order to alter the microstructure of the steel, it is heated in a furnace to a very high temperature, and then rapidly cooled, usually by submerging it in a liquid quench medium such as water or oil. This process will generally result in a very hard, but brittle material, so a secondary operation, called tempering, is employed after quenching. To temper steel, it is reheated to a lower temperature and then cooled in order to remove the stresses and brittleness created during the original quenching operation. Through hardening is useful where increased strength and toughness are required and surface wear isn’t a big concern, such as in our Crimp Drive® and split-drive anchors, setting tools for drop-in type anchors, high-strength all-thread-rod for adhesive anchors, and gas- or powder actuated fasteners. In order to effectively through harden an anchor, moderate levels of hardening elements must be present in the base steel, usually in the form of carbon. As the carbon content in the steel increases, so does the ability to harden it. The chemical composition of the steel along with the specific heat treating parameters will determine the level of hardness, strength and toughness of the final parts.

Surface hardening changes the hardness of the steel at the surface of the part by modifying the chemical composition of the steel at its surface only. This is done by altering the atmosphere in the heat treating furnace in order to get alloying elements, usually carbon, to diffuse into the surface of the steel. The increased carbon content increases the hardenability of the steel at the surface, but it can’t penetrate deeply into the steel, so a thin case forms around the surface of the steel with higher strength and hardness than the interior of the part. This creates parts that have high ductility throughout most of the interior, but that also have hard, wear-resistant surfaces. This type of heat treatment is useful in heavy-duty anchors where components of the anchors are sliding against each other during the setting process. It’s also useful in screw anchors, where the steel threads need to be very hard and wear resistant in order to cut into the concrete, but the ductility of the anchor must be maintained in order to avoid brittle failures in service. Just as with through hardening, there are many variations of surface hardening used in anchors, depending on the specific application.

Figure 3. Cross-section of surface hardened bar showing different hardness zones at the surface and in the interior.4

By using these two processes along with other heat treating processes, we are able to expand our ability to meet the higher demands placed on anchors in an industry that continues to evolve. As heat treating and steel chemistry continue to innovate, we will continue to use these developments to provide our customers with No-Equal concrete anchors that meet our high standard for performance and safety.

Mechanical Anchors

From complex infrastructure projects to do-it-yourself ventures, Simpson Strong-Tie offers a wide variety of anchoring products to meet virtually any need.


1 Lampman et al. (1997). ASM Handbook: Heat Treating. Materials Park, OH: ASM International.

2 “Microstructure of the AISI 4340 Steel.” Digital Image. Research Gate, n.d. Web. 14 June 2017

3 “Heat Treat Furnace.” Digital Image. ThomasNet Web Solutions, n.d. 14 June 2017

4 “Macrographs Showing Case Depth of Steels.” Digital Image. Science and Education Publishing Co. Ltd, n.d. 14 June 2017

Introduction to the Site-Built Shearwall Designer Web Application

Written by Brandon Chi, Engineering Manager, Lateral Systems at Simpson Strong-Tie.

Wood shearwalls are typically used as a lateral-force-resisting system to counter the effects of lateral loads. Wood shearwalls need to be designed for shear forces (using sheathing and nailing), overturning (using holdowns), sliding (using anchorage to concrete) and drift, to list some of the main dangers.  The Simpson Site-Built Shearwall Designer (SBSD) web app is a quick and easy tool to design a wood shearwall based on demand load, wall geometry and design parameters.

The web application provides two options for generating an engineered shearwall solution: (1) Solid Walls; and (2) Walls with Opening using the force-transfer-around opening (FTAO) method. Both options generate solutions that offer different combinations of sheathing, nailing, holdowns, end studs and number/type of shear anchors. The app can generate a PDF output for each of the possible solutions. Design files can be saved and reused for future projects.

App Overview

Design Input: 

Figure 1 shows the input screens for the “Solid Walls” and “Walls with Opening” designs with common wall parameters that are applicable to both design options. The user interface uses quick drop-down menu and input fields for the designer to select the different options and parameters. Unless otherwise noted, all the input loads are to be nominal (un-factored) design loads. The application will apply load combinations to determine the maximum demand forces for the shearwall design.

Figure 1A. Application Design Criteria Input. – Solid Wall

Figure 1B. Application Design Criteria Input. – Walls with Opening

Figure 1C. Application Design Criteria Input. – Common Wall Input Parameters

Figure 2 shows the allowable stress design (ASD) load combinations used for calculating the demand loads for the different components of the wood shearwall (i.e., holdown, compression post, sheathing and nailing design, etc.).

Figure 2. Load Combinations.

In addition to the lateral loads (wind and seismic) applied at the top of the wall and the wall’s own weight, uniform loads on top of the wall and concentrated point loads at the end posts can also be modeled. (See Figure 3.)

Figure 3. Addition Loads on the Wall.

Embedded anchor or embedded strap holdowns can be modeled by the app. (See Figure 4.) For the embedded strap option, additional input parameters are required since they will affect the allowable load of the selected strap holdown.

Figure 4. Holdown Design Options.

The Designer has the option to include additional sources of vertical displacement for drift calculation. (See Figure 5.)

Figure 5. Other Sources of Vertical Displacement Options.

Design Calculations:

For hand-calculated design when the demand forces are determined, the holdown size and shear anchorage can be selected from tabulated values. Design for the sheathing/nailing and compression post is relatively straightforward as well; however, the shearwall drift calculation may take a bit more work. This is where the SBSD app comes in handy. Below are two sections on the shearwall drift and strap force calculations and assumptions used in the SBSD application. If you are interested, please contact Simpson Strong-Tie for other design assumptions used in designing the SBSD app.

Shearwall Deflection Calculations:

Equation 1 shows the shearwall deflection equation from the 2008 Edition of Wind & Seismic Special Design Provisions for Wind and Seismic (SDPWS).

The Δa value from the third term of the equation is the total vertical elongation of the wall holdown system from the applied shear in the shearwall. The third term accounts for the additional displacement from holdown displacement. For holdown deflection, the deflection value depends on the post size used with the holdown size. When hand-calculating shearwall drift, Designers may have to perform a couple of iterations to come to the final post and holdown size. The SBSD app accounts for the holdown displacement and the post size used for overturning force calculation.

For shearwall-with-opening deflection calculation, EQ-2 is used in the SBSD app.

The solid wall, ∆solid wall, term is calculated using EQ-1 above. For the window strip and wall pier deflection terms, the height “h” used in EQ-1 is taken as the height of the window opening. ∆a is the deflection from nail slip in the shearwall. For more information regarding shearwall deflection with opening, please refer to Example 1 in Volume 2 of the 2015 IBC SEAOC Structural/Seismic Design Manual.

Strap Force Calculations:

For the Wall with Opening design option, there are several methods (Drag Strut, Cantilever Beam, SEAOC/Tompson, Diekmann) to calculate the force transfer around the opening. In the SBSD app, the Diekmann technique is used to calculate the pier forces in the shearwall and the strap forces around the opening. When calculating the strap forces, the SBSD app assumes they are the same at the top and bottom of the opening. In addition, contribution of the gravity load only affects the overturning forces in the holdown and post design but not the wall pier forces or strap forces.

Design Output:

Once all design parameters are entered and calculated, a list of possible solutions (where available) will be shown. (See Figure 6.) Common parameters such as sheathing material and type, wood species, minimum lumber grade, etc., are shown first, followed by other design parameters. The user can filter the solutions by seismic drift or wind drift.

Figure 6. Onscreen Output.

The Designer can select the PDF button next to the desired solution to see a PDF design file on a separate screen. (See Figure 7.)  The PDF design file contains the detailed design criteria input by the Designer, calculated demand loads, shearwall material summary, and a design summary for holdown, sheathing, and compression post design. A detail summary for shearwall deflection is also shown, with each term of the shearwall deflection equation (EQ-1) separated. Shear anchorage and design assumption notes follow the design summary section. This PDF file can be saved and printed by the Designer.

Figure 7. Detailed PDF Output.

I hope you find the SBSD web app helpful for your day-to-day wood shearwall design needs. If you have any questions or comments, please leave them in the comments section below.

What Makes a Good Training Facility?

This blog post was written by Charlie Roesset, Director of Training for Simpson Strong-Tie.

When it comes to training, there are many well-researched principles about what makes an environment conducive to improved adult learning.

While we try to hold all training events in facilities that meet most of these principles, (even when traveling to our customers or users means we have to conduct events in hotel meeting rooms) we prefer to host you at our own locations.

To this end, we invest a tremendous amount of time and resources to build and offer dedicated training facilities across the country. These facilities meet all the basic requirements for improved adult learning, but much more as well.

By having our own dedicated training facilities, we can provide learners with a much richer experience and contextually relevant displays.

These displays include partially deconstructed wall segments, foundations and roof systems that give learners a bigger picture of the applications being studied.

Many displays allow for hands-on installations and exercises that allow for improved comprehension of the product use and limitations. Even for the engineering community, who typically are limited to images from a catalog, the hands-on activities add great value. It’s always interesting to see the reaction that engineers have to actually seeing a system approach and having an opportunity to participate in learning that goes way beyond sitting and listening to a lecture.

Sometimes learners just need to see, feel or hold something in order to really understand a concept or product application. We make every effort to bring legitimate educational content to our workshops, supported by products that we hope will furnish solutions to your needs.

Many of our facilities include a plant tour and/or testing-facility tour as well. While these components don’t always align directly with the learning objectives, they do offer a chance for our guests to raise their energy levels and get a better understanding of that scale, capabilities, and commitment to quality that we bring to bear in our endeavor to help people build safer structures.

Additionally, we offer our facilities to customers, associations and industry organizations to use for their own meetings and training events. If you haven’t been to one of our workshops or visited one of our facilities, I highly encourage you to join the 35,000 plus who have over the last four years. You can find a complete list of workshops on our training home page. I expect that you’ll find it an educational and highly engaging experience that helps you build safer structures as well.