Questions Answered: Making the Right Anchor Choice

In this post, we follow up on our August 28 webinar, Making the Right Anchor Choice: Best Practices in Anchor Design, by answering some of the interesting questions raised by attendees.

During the webinar where we discussed the critical performance factors and code requirements you need to consider when designing with or installing adhesive or mechanical anchors. In case you weren’t able to join our discussion, you can watch the on-demand webinar and earn PDH and CEU credits here.
Continue Reading

Keeping Up with Continuing Education (for Free!): Three New Online Courses to Check Out

In this post, Brittney Price, manager of content development for Product & Customer Training, discusses the training offered by Simpson Strong-Tie for customers’ professional development and continuing education credits. The training is offered in online courses and recorded webinars as well as live workshops around the country. The most recent offerings cover the topics of delegated design; code requirements for conventionally framed roofs; and deck inspections.
Continue Reading

Strong Partners SoCal Seismic Symposium with Dr. Lucy Jones and Karen Colonias

Have you ever stopped to think about how much time you spend in a building? You probably spend your day inside your home, school, or office and then stop by the coffee shop, grocery store, or mall. There is a statistic from the Environmental Protection Agency that estimates most people spend close to 90% of their lives inside a building. With all that time inside of a structure, how often do you stop and think about how safe that building is, especially if you live in an earthquake region? And what about the whole community of buildings, and how we would be able to continue living our lives if a big earthquake hit and we were able to survive . . . but had no buildings left that were safe to live or work in? This raises the question of how resilient we would be after an earthquake, how quickly we would be able to recover and resume normal lives after a catastrophic earthquake. For many cities around the world who have suffered through large earthquakes and hurricanes, the answer has been not very quickly at all, with some affected cities estimated as taking as long as 50–100 years truly to recover. We know a big earthquake is coming to Southern California, so what can we do? At Simpson Strong-Tie, we are helping lead the research and innovation to make sure buildings and communities can stay safe in the next earthquake.
Continue Reading

Build Change and Simpson Strong-Tie Renew Fellowship for Engineering Excellence

With the growing danger of natural disasters, the race is on to expand access to programs that safeguard lives from the human-made danger of poorly built housing. With the common mission of building safer, stronger structures, Build Change and Simpson Strong-Tie announced the renewal of the Simpson Strong-Tie® Fellowship for Engineering Excellence program.
Continue Reading

Rod-to-Steel-Beam Connections for Anchor Tiedown Systems: Rod Welding, Brittle Failure, and Alternative Connections

Continuous rod tiedowns are a common way to restrain shearwall overturning in light-frame structures. Anchoring the rod run in a steel beam can be challenging, however, because the holdown typically aligns with the beam’s web and thus cannot pass through the beam. Welding, on the other hand, can cause brittleness and fracture of the rod or coupler at the location of the weld, especially in high-strength steel rods and couplers. An effective alternative also using high-strength rods is provided by the Simpson Strong-Tie® ATS-SBC steel-beam connector, which comes with a steel plate whose flat edges can be fillet welded to the steel beam or embed plate without brittle failure. Scott Fischer, P.E., of Simpson Strong-Tie explains the results of our lab testing in the following post.
Continue Reading

Building Connections: Getting Social with Simpson Strong-Tie

Simpson Strong-Tie was built on the idea of making strong connections. That concept extends beyond our structural innovations for raising or supporting strong, resilient buildings and communities. We use social media and our two company blogs to have conversations not only about our products and services, but also about the values and mission of our company. Here are several of the ways you can tell us about your experiences with Simpson Strong-Tie, learn more about our company or ask us questions.
Continue Reading

Simpson Strong-Tie Build Change Fellow Visits Manila

This week’s post was written by James P. Mwangi, Ph.D., P.E., S.E. — our first annual Simpson Strong-Tie Engineering Excellence Fellow with Build Change. As part of his fellowship he’s been submitting reports about his work supporting the Build Change initiative. This is the last in a series of four.
Continue Reading

Still Using Lag Screws? Consider Self-Tapping Wood Screws Instead

Lag screws are traditionally specified for many structural loads in wood construction. However, recent innovations in engineering for self-tapping wood screws have made them an increasingly popular, labor-saving alternative to lag screws. In the following post, Aram Khachadourian, P.E., of Simpson Strong-Tie discusses the structural and economic advantages of this option.
Continue Reading

CFS Designer™ v2.5 Makes Cold-Formed Steel Design Easier Than Ever

With the use of engineering software tools, structural engineers can design buildings faster and more efficiently than ever before. In this blog post, Clifton Melcher, P.E., a senior project manager for cold-formed steel connectors, discusses the various enhancements included in version 2.5 of Simpson Strong-Tie® CFS Designer™ software.
Continue Reading

Simpson Strong-Tie Build Change Fellow Visits Colombia

This week’s post was written by James P. Mwangi, Ph.D., P.E., S.E. — our first annual Simpson Strong-Tie Engineering Excellence Fellow with Build Change. As part of his fellowship, he’s submitting reports about his work supporting the Build Change initiative. This is the third in a series of four.
Continue Reading